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SUMMARY 

The interaction of shock waves with turbulent regions can have a strong impact 

on the flow evolution, and shock induced heating can trigger ignition, combustion 

and turbulent flame propagation. The numerical resolution of multi-phase, turbulent 

reacting flow is of fundamental importance but remains a very challenging problem. 

The capture of strong discontinuities, typical of high-speed flows, requires the use of 

shock-capturing schemes, which are not adapted to the resolution of turbulent struc- 

tures due to their intrinsic dissipation. On the other hand, low-dissipation schemes 

are unable to resolve shock fronts and other sharp gradients without creating high 

amplitude numerical oscillations. Furthermore, the nature of turbulence in high-speed 

flows differs from its incompressible behavior, and, in the context of Large-Eddy Sim- 

ulation, the subgrid closure must be adapted to the modeling of compressibility effects 

and shock waves on turbulent flows. The developments described in the present report 

are two-fold. First, a state of the art closure approach for LES is extended to model 

subgrid turbulence in compressible flows. The energy transfers due to compressible 

turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are 

assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid nu- 

merical scheme is developed for the resolution of the LES equations and of the model 

transport equation, which combines a central scheme for turbulent resolutions to a 

shock-capturing method. A smoothness parameter is defined and used to switch from 

the base smooth solver to the upwind scheme in regions of discontinuities. 

It is shown that the developed hybrid methodology permits a capture of shock / tur- 

bulence interactions in direct simulations that agrees well with other reference simula- 

tions, and that the LES methodology effectively reproduces the turbulence evolution 

and physical phenomena involved in the interaction. This numerical approach is then 

employed to study a problem of practical importance in high-speed mixing. The 

interaction of two shock waves with a high-speed turbulent shear layer as a mixing 

augmentation technique is considered. It is shown that the levels of turbulence are 

increased through the interaction, and that the mixing is significantly improved in 
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this flow configuration. However, the region of increased mixing is found to be local- 

ized to a region close to the impact of the shocks, and that the statistical levels of 

turbulence relax to their undisturbed levels some short distance downstream of the 

interaction. The present developments are finally applied to a practical configuration 

relevant to scramjet injection. The normal injection of a sonic jet into a supersonic 

crossflow is considered numerically, and compared to the results of an experimental 

study. A fair agreement in the statistics of mean and fluctuating velocity fields is 

obtained. Furthermore, some of the instantaneous flow structures observed in exper- 

imental visualizations are identified in the present simulation. The dynamics of the 

interaction for the reference case, based on the experimental study, as well as for a 

case of higher freestream Mach number and a case of higher momentum ratio, are 

examined. The classical instantaneous vortical structures are identified, and their 

generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, 

two vortical structures, recently revealed in low-speed jets in crossflow but never 

documented for high-speed flows, are identified during the flow evolution. 



CHAPTER I 

INTRODUCTION 

There is a renewed interest in the research community in high altitude and high-speed 
flight. Advanced designs for supersonic and hypersonic vehicles still require significant 
developments, particularly in the field of propulsive systems. Ramjet engines, in which 
the incoming air flow speed is decreased to subsonic speed relative to the engine, can 
be efficiently used for M = 3 to 5 flight regimes, but beyond these speeds, alternate 
propulsion systems are required. The Supersonic Combustion ramjet (or scramjet) 
engine, where the incoming airflow is decelerated but remains supersonic within the 
engine, is one of the most promising propulsion options. The study of mixing and 
combustion processes in supersonic environment has thus been the topic of on-going 
research. A review of scramjet propulsion (Curran and Murthy [2000]) highlights 
the different programs in Japan, Russia, Germany, France and the United States, 
including their specific and complementary aspects. 

Studies of high-speed mixing have been, for the most part, experimental. Progress 
in high-speed imaging and acquisition systems have permitted the development of 
sophisticated methods that provide qualitative and quantitative evaluations of super- 
sonic velocity (supersonic PIV, LDV) and scalar fields (Planar Laser Scattering, Pla- 
nar Laser-Induced Fluorescence, CARS thermometry). These campaigns are however 
limited by the lack of modularity and the high cost associated with the experimental 
rigs. The development of high accuracy, low cost, dynamic numerical simulations, 
on the other hand, could make Computational Fluid Dynamics (CFD) a complemen- 
tary tool for preliminary design purposes, as insights into the physics involved in 
fundamental configurations and in specific geometries could be gained. To be opera- 
tional, such a numerical tool should be able to simulate high-speed flows reliably, at 
reasonable computational cost. 

Turbulence in such engines is of fundamental importance, as fast mixing of fuels 
and oxidizers is a requirement to an efficient and stable combustor. Turbulence in 
compressible flows differs from its incompressible counter-part, and an accurate nu- 
merical approach should account for these changes. The developments presented in 
the present report focus on the development of a novel numerical methodology for 
accurate low-cost calculations of high-speed turbulent flows. To better understand 
the challenges associated with this development, we first review the physics of com- 
pressible turbulence, from the early observations and interpretations to the current 
knowledge. We then present an overview of the challenges encountered during the 
design of high-fidelity numerical schemes for the numerical resolutions of high-speed 
turbulent flows. 



1.1     Turbulence in Compressible Flows 
1.1.1    Compressible Turbulence 

Turbulence is present in most flows of practical interest and has a strong impact on 
their evolution. The seemingly random fluctuations in pressure, velocity, etc. can 
significantly change the dynamics of a system, increasing the drag over a body and 
generating noise, but also leading to high levels of mixing. Turbulence has for these 
reasons been the focus of a large body of research, involving theoretical, analytical, 
experimental and, more recently, numerical works. Despite the chaotic nature of 
turbulence, reliable predictions can be made for many simple, fundamental config- 
urations. However, due to the large span of time- and length- scales involved, the 
complexity of the flow equations, and the variability in experimental and numeri- 
cal studies, the fundamental physics of turbulence is not yet fully understood, and 
remains a very active and prolific area of research. 

Most of the early studies have concentrated on simpler incompressible flows, that 
is, flows with little fluctuations in density associated with pressure fluctuations. The 
simplifications brought to the governing equations from the incompressible assump- 
tion facilitate theoretical and analytical derivations. Furthermore, experimental stud- 
ies are often limited to low-speed incompressible conditions. Yet, the quest for in- 
creased flight speeds has been a major motivation for aeronautical developments, and 
the study of compressible turbulent flows has become necessary as flight speed has in- 
deed increased. The characterization of high-speed compressible and turbulent flows 
is an effort that has combined analytical studies to experimental observations. A tur- 
bulent flow is called compressible when a significant amount of density fluctuations 
is formed in response to perturbations in the pressure field (Lele [1994]), and these 
density variations are associated with local velocity divergence. Kovasznay [1953] 
carried out a small perturbation analysis of the Navier-Stokes equations and showed 
that a field of turbulence could be essentially decomposed into three modes of fluc- 
tuations: vorticity, acoustic and entropy modes. In first order analysis, these modes 
are decoupled. However, higher order analyses show that mode coupling occurs, and 
that any two modes can interact through non-linearities and generate all three modes 
(Chu and Kovasznay [1958]). Furthermore, the turbulent velocity is characterized 
as the superposition of a solenoidal (non-divergent) component, and a dilatational 
(irrotational) part obtained from a Helmholtz decomposition. The first contribution 
is found in incompressible flows, whereas the second component is typical of com- 
pressible flows. Their energetic behaviors are very different in nature. The vortical 
structures of the solenoidal field interact through non-linearities and viscous forces, 
and form the well-known energy cascade. The dilatational field is an ondulatory and 
propagative mode, where kinetic energy is exchanged with the energy contained in 
the thermodynamics fluctuations. The energy balance in compressible turbulence 
is then more complex than in the incompressible case as new physical phenomena 
arise. The turbulent production and solenoidal dissipation (hereafter noted P and 
es respectively) are the main actors of the energy budget in incompressible turbulent 
flows.  The new energy transfers, highlighted in Fig.   1.1, come from the dissipation 
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Figure 1.1:   Transfers between mean kinetic energy, turbulent kinetic energy and 
thermal energy (adapted from Ristorcelli [1997]). 

of compressible turbulence by the dilatational dissipation (e^) of turbulent kinetic 
energy and by the pressure dilatation correlation (< pd >). These decompositions 
have been employed in Rapid Distortion Theories and Linear Interaction Analyses in 
order to gain insight in the fundamental processes of compressible turbulence. This 
analytical work is however limited to fundamental, homogeneous flows, and cannot 
be applied to general and practical configurations. 

These modal decompositions are also often used in the interpretation of experi- 
mental results. Multiple experimental studies have focused on high-speed shear layers 
and their deviation from the incompressible behavior. The skin friction coefficients in 
a high-speed boundary layer and the mixing layer growth rate were found affected by 
the free-stream velocity / Mach number. Two types of compressible turbulent flows 
have been identified: those affected by the variations in the mean thermodynamics 
fields, and those that contain small scale fluctuations in thermodynamics variables 
that interact with the turbulent structures. High-speed boundary layers were found 
to be mostly affected by the large density/temperature gradients within the layer. If 
properly scaled (e.g., van Driest [1951]), these high flows could be directly related 
to the incompressible boundary layers. Morkovin [1962] postulated that the acous- 
tic mode was negligibly small in a typical non-hypersonic boundary layer, and that 
the entropy mode was also negligible for adiabatic flows. Small scale fluctuations 
in the thermodynamics field would then be associated with the velocity fluctuations 
through an isentropic process. The vortical mode of fluctuations is dominant, and 
the turbulent structures are comparable to their incompressible counter-parts (Brad- 
shaw [1977], Friedrich and Bertolotti [1997]). From that perspective, compressible 
turbulence plays little role in the physics of supersonic boundary layers. 

Turbulent mixing layers, on the other hand, were found to be strongly affected by 
the flow compressibility. Experiments have shown that the mixing layers growth rate 
is reduced as the levels of compressibility are increased (Brown [1974], Papamoschou 
and Roshko [1988]).  Also, the turbulent structures in the flow are changed in high 



speed flows: the turbulent shear stress decreases, and the normal stress anisotropy in- 
creases in increasingly compressible mixing layers. Furthermore, the (reduced) growth 
rate is a visible and easily measurable quantity. Parameterizations of the effects of 
compressibility on spatial mixing layers have been obtained, that relate the ratio of 
the compressible to the incompressible growth rates to a quantification of the level 
of compressibility in the shear layer. The convective Mach number (Mc, defined 
from the velocity difference and the average speeds of sound in the two streams, Pa- 
pamoschou and Roshko [1988]), and other parameters (Slessor et al. [2000]) have been 
proposed as a measure of the compressibility levels, leading to a fairly good collapse 
of well-documented experimental data of growth rate reduction onto a single curve 
(Barone et al. [2006]). Another motivation for the study of high speed mixing layers 
lies in the practical implications of the reduced growth rate: mixing is of fundamental 
interest for high-speed propulsion systems, where fuel / oxidizer mixing is of great 
importance. For these reasons, this configuration is an ideal candidate for the study 
of compressible turbulence in practical flows, and has been the focus of many studies, 
but the actual impact of compressible turbulence could not be estimated. 

A new look into the fundamentals of compressible turbulent dynamics has emerged 
with the development of highly accurate computational techniques and the direct nu- 
merical simulations of isotropic turbulent and homogeneous shear flows. The objective 
of the early studies was the characterization and quantification of the compressible 
energy transfers, reviewed earlier, then regarded as the main cause for the shear layer 
growth rate reduction. More particularly, the increasing impact of the dilatational 
dissipation with compressibility was primarily suspected, and many researchers have 
studied its evolution, eventually leading to scaling laws and models for e<j. Zeman 
[1990] attributed the most part of the dilatational dissipation to the appearance of 
shocklets in the flow. These regions of localized compressions (shocks in regions of 
strong dilatational velocity fields, which satisfy the Rankine-Hugoniot relations) have 
been observed in direct simulations of two-dimensional shear layers, and found to 
strongly impact the mixing layer developments. From an assumed probability den- 
sity function of the occurrence of shocklets, Zeman [1990] proposed a simple modeling 
expression for the dilatational dissipation in this analytical work, relating tj linearly 
to ts, with a exponential dependence on the square of turbulent Mach number Mt 

(defined as the Mach number based on the rms velocity of the turbulent kinetic en- 
ergy). Another closure for the dilatational dissipation was derived by Sarkar based 
on DNS simulations of isotropic compressible turbulence (Sarkar et al. [1989]) and 
homogeneous shear flows (Sarkar [1992]). Again, a linear scaling between solenoidal 
and dilatational dissipations was found, with a proportionality factor depending on 
Mf. The other compressible energy transfer, the pressure dilatation correlation, has 
also been regarded as a major means of turbulence modification in compressible flows. 
Acoustic modes, amplified through pressure-dilatation, were believed to lead to acous- 
tic losses, hence reducing the levels of turbulent kinetic energy in the flow. Again, 
many researchers have studied the structural form of this energy transfer, and several 
models have been proposed (Zeman [1990], Taulbee and Van Osdol [1991], Sarkar 
[1992], El Baz [1992]). 

These models successfully reproduced a decrease in the mixing layer growth rate, 



but failed to capture the changes in the mixing layer turbulent statistics, and dete- 
riorated the simulations of high-speed boundary layers. Their physical relevance was 
questionable. The presence of shocklets has not been confirmed in experiments and 
three-dimensional numerical simulations unless relatively high Mach numbers (well 
above the lowest Mach numbers showing compressibility effects) are considered (Vre- 
man [1997], Rossmann et al. [2002], Fu and Li [2006]). Furthermore, the effective 
dissipation due to these features, when present, is found to be at most a few per- 
cent of the overall dissipation (Lele [1994], Vreman [1997]). These early models were 
found not to represent the physics of energy transfers in fully developed compressible 
turbulence, but rather modeled the evolution of flows away from acoustic equilibrium. 

More insight into the development of supersonic mixing layers has been gained 
later from analytical results, Rapid Distortion Theory studies and DNS studies of 
compressible mixing layers. The principal modes of instability change as the convec- 
tive Mach number is increased. The two-dimensional, most unstable modes of incom- 
pressible mixing layers (Michalke [1964], Pierrehumbert and Widnall [1982], Metcalfe 
et al. [1987]) are found to persist for convective Mach numbers up to Mc = 0.6, 
though the growth rate of the wave decreases as the Mach number is increased. Af- 
ter Mc = 0.6, the most unstable mode of the mixing layer has been found to be 
three-dimensional, with further decrease in the instability growth rate (Sandham and 
Reynolds [1991]). These trends persist in the non-linear regimes (Lele [1994]). It has 
been shown that the pressure strain correlation, which re-distributes the turbulent 
kinetic energy between the different components of the turbulent stresses, decreased 
with the convective Mach number, hence increasing the shear stress anisotropy (Sarkar 
[1995], Simone et al. [1997]). The turbulent production is then reduced, and the tur- 
bulent kinetic energy within the mixing layer decreases. Modifications in turbulent 
behavior for compressible mixing layers is found to be mostly of a structural nature. 

At the same time, a more fundamental understanding of compressible turbulence 
has been gained from analytical and spectral studies. Fundamental studies have 
shown that the solenoidal velocity field in isotropic turbulence is not strongly af- 
fected by the levels of compressibility. The spectral representation of the solenoidal 
energy shows a persisting k~5^3 behavior in the inertial range, unless high values of 
the turbulent Mach number are considered (Mt = 0(1), Lele [1994], Bataille et al. 
[1997]). Furthermore, the amount of dilatational energy remains relatively small for 
moderate values of the turbulent Mach number. It has also been shown that the 
dilatational dissipation scales as Mt

4, and inversely to the Reynolds number in the 
limit of small turbulent Mach numbers (Ristorcelli [1997], Fauchet and Bertoglio 
[1999]). The pressure-dilatation is related to the departure from equilibrium in the 
turbulent energy budget (balance between production and dissipation), and can ac- 
cordingly play a non-negligible role in out-of-equilibrium flows. The energy losses 
due to acoustic radiation were, however, found to represent a rather small portion of 
the turbulent kinetic energy production in many cases (Lele [1994], Dussauge [2001]), 
unable to represent alone the turbulent kinetic energy reduction. Finally, it should 
be noted that high values of Mt are not likely to be encountered in configurations 
of practical interest, unless hypersonic speeds are considered (Ristorcelli and Blais- 
dell [1997], Ristorcelli [1997], Dussauge [2006]), leading to a "weakly compressible 



nature of turbulence" (Ristorcelli and Blaisdell [1997]). The small Mt developments 
described here are valid for a large range of practical configurations. 

Overall, it is seen that turbulence in high-speed flows is mostly solenoidal, with lit- 
tle contributions from the dilatational components of the velocity field. Furthermore, 
the universal scales of the solenoidal component of the velocity are not affected by the 
presence of compressible turbulence, and still show an incompressible behavior. Scal- 
ings of the dilatational dissipation and pressure-dilatation correlation show that the 
former is negligibly small for most cases of practical turbulent flows (small Mt, large 
Reynolds number), whereas the latter can play a role in out-of-equilibrium flows, and 
should be considered in the turbulent energy budget. The most important impact of 
compressibility on the turbulent behavior resides in the modification of the Reynolds 
stresses caused by the reduced pressure strain rate correlation. 

1.1.2    Shock / Turbulence Interaction 

The findings presented earlier have highlighted the very low levels of compressible 
(dilatational) velocity in many practical configurations. The changes in compressible 
turbulent flows have been found to be mostly of a structural nature. These results are 
valid for flows with small bulk dilatation, that is, when the length-scales of the tur- 
bulent fluctuations are comparable or smaller than the characteristic length-scales of 
the pressure fluctuations. The presence of strong compressions, typical of supersonic 
flows, changes the considerations presented earlier, and lead to a different evolution 
of the turbulent statistics. 

Interactions of shocks with shear flows occur in many high-speed flow situations 
such as external aerodynamics of transonic, supersonic and hypersonic vehicles or 
internal flows in scramjets. Such interactions can have a strong impact on the flow 
evolution, increasing turbulent mixing, but also increasing losses and surface drag 
and/or heat transfer depending upon the strength of the shock. Many studies of 
shock / turbulence interactions have been conducted, both numerically and experi- 
mentally (see Andreopoulos et al. [2000] for a review), and physical insights have been 
gained from the studies of simple test cases, such as the interaction of shocks with 
isotropic and/or homogeneous turbulence, studied experimentally (e.g., Jacquin et al. 
[1993], Honkan and Andreopoulos [1992], Barre et al. [1996], Agui et al. [2005]) and 
numerically using high-order shock capturing methods (e.g., Lee et al. [1993], Han- 
nappel and Friedrich [1995], Lee et al. [1997], Mahesh et al. [1997], Jamme et al. [2002, 
2005]) and, more recently, using a shock-fitting method (Sesterhenn et al. [2005]). 

It has been shown that shock / turbulence interactions generally lead to an ampli- 
fication of all components of the turbulent stresses, and consequently of the turbulent 
kinetic energy. In the case of shock / isotropic turbulence interactions, linear analysis 
shows that the stream-wise component of the stress is the most amplified for a mean 
flow Mach number of M < 2, and that the trend is reversed afterward. As the mean 
flow Mach number is further increased, the amplification factors saturate at M « 3 
(Lee et al. [1997]). 

A more detailed observation of the turbulence evolution behind the shock shows 
that the transverse fluxes decrease first in the post-shock region as a consequence 



of the compression, while the streamwise stress is directly amplified In response to 
the incoming fluctuations in velocity and thermodynamics, the shock front corrugates 
and oscillates around its mean position. This phenomenon leads to the generation 
of pressure and dilatational velocity fluctuations behind the front. The acoustic po- 
tential energy created from this corrugation feeds the Reynolds stresses: evanescent 
acoustic waves amplify the levels of turbulence further downstream of the interaction 
(Lee et al. [1993, 1997], Jamme et al. [2002]). This energy transfer occurs over a 
short region behind the shock, and amplifies mostly the dilatational velocity field, 
hence increasing the level of compressible turbulence. The non-linear coupling be- 
tween solenoidal and dilatational modes leads to a redistribution of the energy, leaving 
downstream a field of homogeneous and mostly solenoidal turbulence. 

The amplification of the turbulent stresses behind the shock was found to be de- 
pendent on the shape of the initial energy spectrum of the incoming turbulent fields, 
its thermodynamic state and its level of compressible turbulence (Lele [1994], Han- 
nappel and Friedrich [1995]). Lee et al. [1997] demonstrated that the physics of the 
interaction shock / turbulence actually had only little dependence on the initial spec- 
trum, but much stronger correlation was found for the other parameters. Linear anal- 
ysis and direct simulations showed that thermodynamic and entropy fluctuations were 
reduced through the interaction, even more so as the Mach number was increased. 
Correlations between streamwise velocity and temperature fluctuations of the initial 
turbulent field were found to influence the anti-correlation of vortical and acoustic 
modes in the post-shock region, and impact the level of stress amplification. A posi- 
tive correlation between streamwise velocity and temperature fluctuations reduces the 
stresses amplification factor and increases the transverse characteristic length-scales, 
while a strongly negative correlation results in an essentially opposite trend (Mahesh 
et al. [1997], Jamme et al. [2002]), significantly impacting the interaction of shock 
waves with turbulent boundary layers. 

1.2    Numerical Simulation of Compressible Turbu- 
lent Flows 

Simulations of supersonic turbulent flows are a somewhat recent effort. Most of 
the early numerical schemes were found either too dissipative to perform turbulent 
studies, or incompatible with the strong variations found in compressible turbulent 
flows. Besides fundamental studies, the resolution of practical configurations in com- 
pressible environment by Reynolds Averaged Navier Stokes (RANS) or Large-Eddy 
Simulations (LES) suffered from the same inadequacy of the computational methods, 
and from the absence of closure models adapted to high-speed turbulent flows. The 
challenges that need to be faced to develop a reliable LES methodology for the sim- 
ulation of compressible turbulent flows are two-fold: first, the resolution of turbulent 
flows requires highly accurate non-dissipative schemes. Second, the practical simu- 
lations of turbulent flows cannot be performed exactly for full-scale configurations, 
and modeled equations have to be solved for this flows. The relevance of the results 
depends on the accuracy of the modeling method adopted. 



1.2.1     Numerical Issues in Supersonic Turbulent Flows Computations 

A proper computational methodology requires highly accurate numerical schemes that 
permit the capture of flow discontinuities such as shocks and contact discontinuities, 
as well as the resolution of turbulent structures. This is a challenging task, as the 
self-steepening nature of shock waves requires a dissipative scheme to enable their 
capture with reduced unphysical oscillations, whereas a low-dissipation is desired for 
the accurate resolution of turbulent fields. The techniques developed for the resolution 
of the hydrodynamics equations, where crisp discontinuity capturing is desired, are 
presented first. The second part reviews the development of algorithms for the studies 
of turbulent flows in supersonic environments, where, in addition to shock-capturing 
properties, a low dissipation is desired. 

Upwind schemes for the resolution of supersonic flows 

Until 1959, most numerical approaches were based on the expansion of the gov- 
erning equations into Taylor series to obtain a finite difference approximation to 
the governing equations. Implicitly, the functions discretized are assumed continuous 
with continuous derivatives. This assumption is certainly not true in supersonic flows, 
where shocks and contact discontinuities are part of the flow. Many researchers have 
developed directionally biased numerical methods to handle physical discontinuities. 
Even then, most schemes were found to be dispersive, which led to high amplitude 
non-physical oscillations in the regions of the discontinuities. 

Godunov [1959] first recognized that this assumption of continuous functions could 
be relaxed by resolving the Euler equations in a finite volume framework (while most 
studies until then were using finite difference), and resolving a Riemann problem for 
every interface. Getting an evaluation of the fluxes through the exact solution of 
the non-linear problem relaxed the assumption of continuous variables. This method, 
which allowed the non-dispersive resolution of flows with discontinuities was applied, 
and, to some extent, further developed in the following years. In the beginning of 
the 1970's, fundamental studies on the mathematical formulation of upwind schemes 
for the resolution of systems of hyperbolic equations were conducted (Lax [1972], 
van Leer [1973]), which later led to the development of more accurate, more stable 
and less dissipative methods. Among the first such contributions, and maybe one of 
the most influential, was the Monotone Upstream Centered Schemes for Conserva- 
tion Laws (MUSCL) approach of van Leer [1973, 1974, 1979], where a higher order 
reconstruction of the physical field was achieved, while preserving the monotonicity 
of the solution. 

Further developments of upwind schemes followed in the 1980's, based on the 
previous studies. Colella and Woodward extended the order of the reconstruction 
method, and developed the high-order and very accurate Piecewise Parabolic Method 
(Colella and Woodward [1984]). A framework was devised by Harten et al. [1987], for 
which an arbitrary order of accuracy can be achieved by adapting the stencil for the 
reconstruction to an adapted smoothness parameter. This scheme, based on the Total 
Variation Bounding condition and called Essentially Non Oscillatory (ENO) scheme, 



has been further extended by Liu et al. [1994b] to the Weighted Essentially Non 
Oscillatory (WENO) schemes, resulting in sharper resolutions of the discontinuities. 

The developments conducted during that decade also included the design of ap- 
proximate Riemann solvers needed for the closure of these upwind schemes. Exact 
Riemann solvers suffer from prohibitive costs. Researchers have started defining ap- 
proximate solvers that satisfy acceptable accuracy, while significantly reducing the 
simulation's cost. The approximate Riemann solvers of Osher and Chakravarthy 
[1983], Roe (Roe [1981]), Harten-Lax-vanLeer (Harten et al. [1983]), the Two-Shock 
Riemann Solver and the Adaptive Non iterative Riemann Solver (Toro [1999]) are 
among the most commonly used. These schemes are referred to as Flux Difference 
Splitting (FDS) methods. Other shock-capturing methods have been addressed, such 
as the Flux Vector Splitting (FVS) techniques. Most of the FVS approaches, of- 
ten used in external aerodynamics simulations, are based on the FVS of Steger and 
Warming [1981], or on the FVS method of van Leer [1982]. These methods are very 
appealing due to their great simplicity and computational efficiency. However, their 
excessive dissipation has led researchers towards the development of new schemes, 
that combine the simplicity/cost advantages of FVS methods, and the accuracy of 
FDS methods, by splitting the treatment of the inviscid equations into pressure- 
based fluxes and convection-based fluxes, leading to the Advection Upstream Split- 
ting Method (AUSM) class of schemes (Liou and Steffen [1993]). The diffusion of 
these methods remains small and viscous flows can be correctly captured. Finally, 
the shock-fitting techniques have raised a recent interest. Their basis is the treatment 
of shock waves as propagating discontinuities, resolved with the dynamic Rankine- 
Hugoniot relations and the integration of this discontinuity to the global resolution. 
Their inclusion in general three-dimensional simulations is however complex and pro- 
hibitively expensive. 

• Hybrid numerical schemes for the study of compressible turbulence in supersonic 
flows 

The study of compressible turbulent flows using Direct Numerical Simulation 
(DNS) and LES can be performed using a wide variety of schemes. Central schemes, 
Pade differencing, compact schemes or spectral methods are commonly used in such 
studies. Their use for simulations where strong gradients are present is, however, in- 
adequate, and alternate approaches are required. Upwind methods with very fine res- 
olutions, such that the inherent numerical dissipation does not dominate the turbulent 
behavior, have been successfully employed in the past. High resolution simulations 
of compressible turbulence, for instance, have been performed using ENO/WENO 
schemes (Ladeinde et al. [1996], Martin [2006]), or the Piecewise Parabolic Method 
(PPM) (Mirin et al. [1999]). Such simulations are, however, not always feasible. Lee 
et al. [1997] showed in a DNS study of shock / turbulence interaction that the use of a 
sixth-order ENO scheme throughout the domain significantly dissipates the turbulent 
energy of the flow. 

Hybrid schemes have been proposed for the resolution of high-speed viscous prob- 
lem in the context laminar flow simulations and/or under-resolved DNS studies, where 



schemes developed to capture flow discontinuities were found to be too dissipative and 
to artificially increase boundary layer thicknesses and other viscous properties of the 
flow. One of the first examples of hybrid schemes was proposed by Harten and Zwas 
[1972], blending a Lax-Wendroff method and a Lax-Friedrichs approach, Harten [1978] 
later revisiting this methodology and replacing the Lax-Friedrichs scheme with a first 
order upwind approach. These formulation, though capable of capturing some of the 
important flow physics, were found to strongly depend on the shock detection for- 
mulation, and lack universality. The numerical scheme presented by Jameson et al. 
[1981] can be seen as a hybrid methodology, where a central scheme with second-order 
artificial dissipation, for shock capturing purpose, is blended with a central scheme 
with fourth-order artificial dissipation for smooth flow resolution. 

The development of hybrid methodologies switching explicitly between different 
fluxes evaluations has gained popularity in the studies of high-speed turbulent flows 
from a DNS stand-point. Some studies have been conducted using primitive, non 
self-adapting hybrid schemes, in which the stationary properties of the flow were 
used to arbitrarily separate the regions where upwind schemes are used from those 
where central/spectral/compact schemes are used (Lee et al. [1997], Mahesh et al. 
[1997]). For instance, for the resolution of shock / turbulence interaction by DNS, 
Lee et al. [1997] used a sixth-order ENO shock-capturing scheme only in the mean- 
flow direction, over a relatively short region surrounding the mean shock location, 
defined offline, and used a Pade scheme over the remaining cells, and for all cells in 
the transverse directions to minimize dissipation effects. 

Hybrid schemes, where two different flux computations are employed in differ- 
ent regions of the domain, are currently being developed for similar applications. A 
dynamic switching procedure is usually associated with these schemes. The local 
smoothness of the flow is evaluated and used to determine the scheme to employ. 
Many of these hybrid schemes use compact schemes for the capture of the turbulent 
structures in the flow, as these schemes show a spectral-like resolution. Further- 
more, using low-pass spatial filtering techniques, these methods have been applied to 
curvilinear grids. However, compact schemes are poorly suited to the resolution of 
transonic to supersonic flows, creating high amplitude, unphysical oscillations, and 
much work has been devoted to the stabilization of these schemes in shock-containing 
flows, spanning from artificial diffusion (Cook and Cabot [2004], Kawai and Lele 
[2008]) to the application of adaptive filters, reducing the accuracy in close shock 
regions only (Visbal and Gaitonde [2005]). In the context of hybrid methods, these 
compact schemes have been combined to TVD (Rizzetta et al. [2001]), ENO (Adams 
and Shariff [1996]) or WENO (Pirozzoli [2002], Ren et al. [2003]) schemes and have 
been found well suited to simple canonical flows. However, extension to complex 
(practical) geometries and parallelization of such codes is difficult (Hill and Pullin 
[2004]), and the computational cost of these schemes is rather high, which makes 
such schemes unadapted to full scale simulations. 

Alternatively, hybrid schemes that employ classical central schemes for the res- 
olution of the smooth regions in the flow have been proposed (Vreman [1997], Hill 
and Pullin [2004], Kim and Kwon [2005], Fryxell and Menon [2005]). Their low cost, 
good accuracy and applicability in complex domains make them suitable candidates 
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for practical applications. Furthermore, their adaptability to body-conforming grids 
permits the development of methods valid in practical geometries. 

1.2.2    Turbulence Modeling for Compressible and High-Speed Flows 

Turbulent flows are entirely described by the Navier-Stokes equations, which involve 
a very large range of time- and length- scales. Direct Numerical Simulations of com- 
pressible flows can be performed for fundamental configurations, and can provide 
valuable insights into the physics and processes of canonical flows. Their extension 
to arbitrary, realistic flows of interest is not yet feasible, as the computational re- 
sources required increase significantly as the simulated Reynolds number is increased. 
Practical, full-scale geometries usually involve very high Reynolds numbers, orders 
of magnitude larger than what is currently achievable with DNS. The universality 
of the small scales of turbulence has been exploited to reduce the computational re- 
quirements. A scale separation permits one to distinguish the geometry-dependent 
energetic scales, which require an exact resolution, from the universal scales, which 
can be modeled from theoretical and analytical considerations, or from experimental 
observations. 

In this context, statistical averages of the turbulent motions are commonly used. 
Reynolds-Averaged Navier-Stokes (RANS) simulations permit a capture of the time- 
averaged fields of the flow, and can provide detailed information on some physical 
features and processes in a complex environment, provided an accurate turbulence 
model is used. The entire spectrum of turbulent statistics (in time and space) must be 
accounted for in the models used in these simulations. Furthermore, the dynamics of 
the system is lost. Many applications are strongly affected by the unsteadiness of the 
physical processes, and cannot be captured correctly by time-averaged methodologies. 
Large Eddy Simulations are an alternative approach to RANS for the simulation of 
turbulent flows. There, the universality of turbulence at the small length-scales is 
exploited. The large scales are explicitly resolved, and their interaction with the 
small scales modeled. The temporal evolution of the flow is explicitly solved. A 
proper modeling of the small (subgrid) scales is required in this approach. 

Most numerical studies of high-speed flows are based on models developed for 
incompressible flows and include some compressibility corrections derived from some 
of the early work described earlier. The dilatational dissipation model of Sarkar [1991] 
is often used in practical models (Delarue and Pope [1997], Oevermann [2000], Park 
and Mahesh [2007]) This scaling relates the compressible dilatation to the solenoidal 
dissipation as: 

td = ad{Mt
2 + 0(M?))ts (1.1) 

As reviewed earlier, this model does not reflect the correct physics of compressible 
dilatation, but it is still used as it is successful in capturing the reduced growth rate 
of compressible mixing layers. The actual variations of the dilatational dissipation 
for relevant aerodynamics applications was shown by Ristorcelli [1997] and Shao and 
Bertoglio [1996] to scale as: 

« = w,<- (12» 
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with an inverse proportionality to the Reynolds number (Rei). From these consid- 
erations, the dilatational dissipation is expected to play an important role only in 
the context of high Mt and low-Reynolds number compressible flows. Several mod- 
els for the pressure-dilatation have also been proposed. Sarkar [1991] conducted a 
scaling analysis based on the decomposition of the pressure field into contributions 
of incompressible and purely compressible components, and found from DNS stud- 
ies of isotropic compressible turbulence (Sarkar [1991]) and compressible shear flows 
(Sarkar [1992]) that the pressure-dilatation scales as: 

< pd >= -axPMt + a2tsMf + a3SkkkM? (1.3) 

where Skk represents the flow dilatation. This model is still used in some RANS 
applications (Calhoon et al. [2006], Fasel et al. [2006]) In practical aerodynamics 
flows, this correlation was found from asymptotic analysis to be a function of the 
departure from equilibrium of the turbulent kinetic energy budget. Ristorcelli [1997] 
found that: 

<pd>cxM?(—)   [P-e] (1.4) 

where S is the rate of strain and k the turbulent kinetic energy. This model has been 
integrated in second order moment closure models to model the isotropic part of the 
pressure strain correlations (Adumitroaie et al. [1999]). Other studies have closed 
the pressure-dilatation correlation by explicitly tracking the density and/or pressure 
variance in the simulation (Taulbee and Van Osdol [1991], Durbin and Zeman [1992], 
Yoshizawa [1995], Hamba [1996]). 

Many models have been proposed and employed to account for the influence of 
the dilatational turbulence on the flow evolution. Most of the early models have been 
derived from direct simulations, where arbitrary levels of compressibility were used 
for initial conditions, and did not represent the physics of well-developed compressible 
turbulent flows. Other models have been suggested where the energetic transfers are 
not modeled directly, but require the resolution of (multiple) additional equations 
within the flow, leading to higher levels of complexity and modeling uncertainties. 
Models that integrate the analytical scalings of the compressible energetic transfers 
have not yet been proposed for simple, energetic closure approaches. 

1.3    Present Study 
The goal of the present study is to develop a computationally efficient Large-Eddy 
Simulation methodology adapted to the resolution of high-speed turbulent flows for 
practical applications. To achieve this goal, two objectives have been identified and 
addressed. The first objective consists in developing a numerical method that satisfies 
the constraints imposed by the simulations of turbulence in high-speed flow. Regions 
of strong discontinuities have to be captured as a part of the solution, so that the 
methodology can be applied to general flows with propagating waves. In that sense, a 
locally dissipative scheme must be employed. Away from discontinuities, the scheme 
must be adapted to the resolution of smooth flows dominated by turbulent structures, 
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reducing the amount of intrinsic dissipation. A hybrid numerical scheme is developed 
and presented in this study, that combines a fourth-order central scheme to a flux- 
difference splitting approach for shock-capturing purpose. A switching procedure 
based on an evaluation of the local flow smoothness is used to combine these two 
numerical schemes. 

The second objective is to extend a state of the art closure approach to properly 
model the relevant physical features that arise in supersonic compressible turbulence. 
A model adapted to the resolution of high-speed turbulent flow must integrate the 
modes of energy transfer typical of compressible turbulence. Furthermore, the energy 
budget in shock / turbulence interactions must be modeled correctly. As reviewed 
earlier, the level of compressible turbulence in practical flows is small compared to the 
incompressible contribution. The extension of a low-compressibility model to include 
compressibility effects is justified. The Localized Dynamic ksgs Model (LDKM) is 
extended in the current study to model the pressure-dilatation correlation, important 
in non-equilibrium flows, and the diffusion of turbulent energy by pressure fluctua- 
tions, which plays an important role in shock / turbulence interactions. Based on the 
analytical scalings described earlier, the dilatational dissipation is found negligible in 
the problems of practical interest, where typical Reynolds numbers are high and the 
turbulent Mach number low. This mode of energy transfer is neglected in the present 
developments. The structural changes of the turbulent features with compressibility 
are captured through the dynamic evaluation of the closure model. 

The LES methodology developed during the present study is validated against fun- 
damental studies of canonical flows and practical applications of interest. Notably, a 
re-examination of the shock / turbulence interaction is performed in the context of 
DNS, to assess the performance of the hybrid methodology, and is repeated using the 
LES methodology to show the proper capture of the physical phenomena involved 
in this problem. This study is then extended to the analysis of the physics involved 
in a shock-induced mixing enhancement technique. Furthermore, the simulation of a 
configuration relevant to scramjet injections is performed. The classical configuration 
of a sonic jet injection into a supersonic cross-flow is used to highlight the compress- 
ible closure performance, and a study of dynamical behavior of the problem, with a 
particular emphasis on the dynamics of the turbulence evolution, is performed. 

This report summarizes the key developments and results obtained in the course of 
this project. Chapter 2 presents the mathematical modeling used in the present for the 
simulations of compressible turbulent fluid flow. The chapter opens with a description 
of the Navier-Stokes equations for a compressible flow, followed by a derivation of the 
LES equations that result from a filtering operation. The unclosed terms that result 
from the filtering operation and require modeling are then highlighted. This chapter 
is closed by presenting the modeling approach adopted for this study, including the 
modeling of the compressible terms, specific to the present development. 

The second developmental aspect of this work is presented in Chap. 3. This 
chapter presents a hybrid framework that permits the combination of two schemes 
with different characteristics, in order to capture supersonic turbulent flows. A low- 
dissipation scheme, adapted to the resolution of turbulent flows away from shocks 
is associated to an upwind method for discontinuity-capturing purpose.   A detailed 
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description of the two numerical schemes integrated in this framework is provided. 
In particular, the shock-capturing scheme developed and implemented for the resent 
study is given in detail. 

Chapter 4 presents the testing, validation and application of the presented LES 
methodology to problems of shock / turbulence interactions. Direct simulations of 
shock / isotropic turbulence are presented first and compared to reference data. This 
fundamental configuration is used to validate the numerical approach, and to highlight 
the importance of some closure terms in an a priori study of the closure model. This 
study is then repeated from an LES perspective, showing the proper capture of the 
turbulent evolution with the developed LES methodology. Application to a more 
practical case of shock / turbulent shear layer interaction is then considered. A high- 
speed mixing layer is simulated with and without shocks interactions, highlighting 
the impact of the shocks on the shear layer evolution, and the localized enhancement 
of the mixing efficiency due to the turbulence amplification through the interaction. 

In Chap. 5, the relevance of this approach is demonstrated by applying it to a 
practical scramjet configuration. The numerical set-up reproduces the experimen- 
tal study of a sonic jet in supersonic cross-flow, considered as a potential injection 
method in scramjet designs. Results show a good capture of the physical processes 
and demonstrate the applicability of the proposed hybrid LES approach to practical 
supersonic flow modeling and design problems. The influence of the compressible 
closure on the flow features is reported. Furthermore, the time-accurate resolution of 
this interaction permits a capture of the flow dynamics and an identification of the 
time-averaged and instantaneous vortical structures is presented. 

Chapter 6 closes this report by summarizing the different developments performed 
in this work, highlighting their relevance and range of applicability, and finally closing 
with a few recommendations for future work. 
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CHAPTER II 

GOVERNING EQUATIONS AND MODELING 

In the present chapter, the governing equations for LES of compressible turbulent 
flows and the closure strategy developed for this study are presented. First, the more 
general Navier-Stokes equations are described. The filtering operation is presented 
next, the LES equations are obtained and the unclosed terms identified. Finally, the 
model used to evaluate these subgrid terms is presented. 

2.1    The Navier-Stokes Equations 
The Navier-Stokes equations can be used to entirely describe any compressible tur- 
bulent flow, in the continuum regime, and in the absence of external forces, MHD 
effects, etc. These equations express the conservation of mass, momentum, energy 
and species densities, and read: 

^ + ^- [fnnuj + PSij - Tij] = 0 (2.2) 

^ + — [{pE + P)Ui + qi- UjTij] = 0 (2.3) 

^ + -^[pYk(Ul + Vhk)}=0   k=l,...,Na (2.4) 

Here, p is the density, («i)i=i,2,3 is the velocity vector in Cartesian coordinates, P is 
the pressure, and Yk is the mass fraction for species k. Also, 7VS represents the total 
number of species in the flow. The total energy is noted E, and ry, <& and V^ are 
the stress tensor, the heat flux vector and the species diffusion velocity respectively. 
The total energy is the sum of internal energy (e) and kinetic energy: 

E = e + -ukuk, (2.5) 

where the internal energy is the sum of the contributions from all species: 

= J2Y^ (2-6) 
*;=i 

where ek corresponds to the k — th species sensible energy. 
This system of equations remains unclosed until an equation of state (EOS) is 

defined to relate the thermodynamics variables together. Furthermore, expressions 
for the stress tensor, the heat flux and the species diffusion velocity are required. 
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• Equation Of State 

It is assumed in the present study that the gases under consideration obey to the 
perfect gas EOS. Introducing the temperature T, this EOS can be expressed as: 

P = pRT (2.7) 

Here, R is the universal gas constant per unit mass. With 1Z,U the universal gas 
constant per mole, R is given by: 

where MWk is the molar weight of the k — th species. With this EOS, it can be 
shown that the internal energy is a function of the temperature only, so that the 
k — th species sensible energy is expressed as: 

ek = e°k+ f  CVik{T')dr (2.9) 
JTo 

where CVtk(T) is the specific heat at constant volume for the k — th species and e° is 
the reference energy evaluated at a reference temperature T0. Let us also define, for 
convenience, the enthalpy as h = e + P/p. The sensible enthalpy of a given species k 
can then be written as: 

hk = h°k+ f   CpM{T')dT (2.10) 
JTo 

where Cp<k(T) is the specific heat at constant pressure for the k — th species and is 
related to CVik(T): 

Cp,k(T) = CVik(T) + ^ (2.11) 

If the specific heats are assumed independent of temperature, a calorically perfect gas 
(CPG) is considered, and it is customary in this case to define the ratio of specific 
heats 7 as: 

Ik = %*• (2.12) 

The EOS is then fully defined with Eqn. 2.11 and 2.12. This closure is appropri- 
ate to fundamental studies or simulations of practical flows with low temperatures 
and/or flows with small temperature variations. However, when higher variations 
in the temperature field are expected, one must resort to a more advance EOS. A 
thermally perfect gas (TPG) has temperature-dependent specific heats, and is well 
adapted to the simulations of practical flows under moderate conditions of pressure 
and temperature, that is, away from the critical thermodynamics condition. In the 
present study, despite the presence of strong compressive waves, the physical con- 
ditions are far from the critical points and the conditions of validity of the perfect 
gas EOS are satisfied. The specific heats temperature dependence are obtained from 
experimental measurements and curve-fitting (Gordon and McBride [1994]). 
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• Definition of the stress tensor 

The fluids simulated here are assumed to be Newtonian: the stresses are propor- 
tional to the local rate of strain. Mathematically, this is expressed as: 

(dut      duj\ duk 

where /J, is the viscosity coefficient, assumed to be a function of temperature only. 
Again this assumption is acceptable for the pressure and temperature ranges con- 
sidered in the present study. For gases, the viscosity is an increasing function of 
temperature, and different models exist to describe this dependence (White [1991]). 
Sutherland's law for the viscosity is given by: 

"-»($r%7§'       <2i4) 

where //o, T0 are species-specific reference values and S a constant. The dependence 
is sometimes given as a power-law function, 

^ = Mo   (Jr) (2-15) 

where the exponent n depends on the fluid composition, but usually takes values close 
to 0.7. 

The remaining constant in Eqn. 2.13, A, is the bulk viscosity. Following Stokes' 
hypothesis, it is assumed that the stress tensor is traceless, so that the bulk viscosity 
is related to fi as A = — 2/3/x. Finally, the stress terms are given by 

Tij = 2/x  I Stj - -SkAj j (2.16) 

where Sij is the rate of strain tensor: 

*-K£+&) (2-i7) 

• Definition of the heat flux vector 

The heat flux vector has contributions from the thermal conduction and from the 
flux of sensible enthalpy due to species diffusion.  Fourier's law is used to relate the 
thermal conduction to the local temperature gradient.  The expression for the heat 
flux vector is: 

dT N° 
Qi = -K— + p22YkhkVitk (2.18) 

For the range of conditions considered in this study, the thermal conductivity «, is 
also a function of the temperature only. Correlations of the type of Sutherland's law 

17 



or of the power law dependence can be used. A Prandtl number (Pr) can be used to 
relate K to ^. The Prandtl number is defined as: 

Pr = ^ (2.19) 
K, 

and is assumed constant in the present study {Pr = 0.72). 

• Definition of the species diffusion velocities 

The species diffusion velocities, V^k, are modeled using a Fickan diffusion approx- 
imation. This closure reads: v<* - "ft <2 -20> 
The diffusion coefficient D^ depends on species k, the other species in the environment 
and the static pressure and temperature. Here, these coefficients are obtained from 
a constant Lewis number (Le) assumption, where the Lewis number is: 

With the equation of state and the expressions for the stress tensor, the heat flux 
vector and the species diffusion velocity, the Navier-Stokes equations are closed and 
can be solved exactly through Direct Numerical Simulation (DNS). In this context, 
accurate simulations of turbulent processes should capture all the relevant scales of 
motion, from the largest, scaling with the outer dimensions of the configuration, 
down to the smallest scales of the flow, of the order of the Kolmogorov scale. This 
separation of scales increases as the Reynolds number is increased. As a consequence, 
the discretization requirements grow rapidly as the simulated Reynolds number is 
increased. As an illustration, Kaneda et al. [2003] performed a simulation of a Re\ = 
1200 isotropic turbulent field, which required a resolution of 40963 grid points. This 
Reynolds number, probably about as high as we can get today through DNS, is still 
far from what is reached in full-scale configurations. DNS does not appear as a viable 
solution to the current industrial and/or practical needs in computer simulations of 
fluid flows. 

2.2     Governing Equations for LES 
The separation of scales in high-Reynolds number turbulent flows, and the univer- 
sality of the small scales, as first envisioned by Kolmogorov, are widely accepted 
characteristics of a turbulent flow. The Large Eddy Simulation equations are ob- 
tained by spatially filtering the Navier-Stokes equations, in order to separate the 
large, geometry-dependent scales from the small, universal scales. LES methods rely 
on the assumption that the universal small scales and their interaction with the large 
scales can be modeled, whereas the large energy containing scales need to be explic- 
itly solved. In the present section, a spatial filter is applied to the Navier Stokes 
equations, and the Favre-filtered LES equations are presented. All subgrid, unclosed 
terms are explicitly identified. 
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2.2.1 Spatial Filtering and Favre Averaging 

The separation between large and small scales is obtained by applying a spatial filter 
to the governing equations. Let G(x, x') be the mathematical description of the filter 
Kernel used for this operation, where x and x' are position vectors. Then, variable / 
is filtered into / as: 

7(x,t)=  //(x',i)G(x,x')d3x' (2.22) 

where Q represents the entire domain. In the current implementation, the filter used 
is a top-hat filter kernel. Practically, G is the product of three one-dimensional filters: 

3 

G(x-x,) = l[gi(xi-x'i) (2.23) 
t=i 

where xt is the i — th computational coordinate, and g^s are one-dimensional top-hat 
filters that read: 

9i(xi-x'i) = \   &     I**-**!<* (2.24) 
I  0,       otherwise 

Aj is the local one-dimensional filter size in the i—direction. The global filter size 
A is obtained from the one-dimensional filter sizes as A = (AiA2A3) . For the 
current LES methodology, the one-dimensional filter sizes are based on the local grid 
spacings, and A is a measure of the local grid cell size. 

Let us also define the mass-weighted filtered variable, or Favre-filtered variable. 
This alternate averaging procedure is often performed for the study of compressible 
flows as it significantly reduces the number of unclosed terms that result from the 
filtering operation, and is adopted in the present study. / is the Favre-filtered variable 
/ defined by: 

l=P4r (2.25) 
P 

where p is the local fluid density. 

2.2.2 Filtering the Navier-Stokes Equations 

The spatial filter described above can be reduced to a function of x — x', the relative 
position in space, and can thus commute with both temporal and spatial partial 
derivatives. The application of the filter to the Navier-Stokes equations is hereafter 
presented. 

• Mass conservation 

The equation for mass conservation reads: 
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Using the commutativity of the filter with the derivatives, the filtered continuity 
equation reads: 

|+^=0 (2.27) 
at      oxi 

Finally, in terms of Favre-filtered variables, this equation reduces to: 

• Momentum conservation 

The governing equation for the momentum is obtained by following the same steps 
as for the continuity equation: the exact equation is filtered, and the commutativity of 
the filter with the derivatives is called. Finally, Favre-filtering is used. The governing 
equation for momentum reads: 

' + /- \pGiSj + P&ij ~nj]=0 (2.29) 
dt       dxj 

This relation is strictly equivalent to the following: 

^T + W- &*% + P6ij + T%s-^=° ^2-30) 
' J 

so that the convective term in the equation above can be treated from the resolved 
field, and the subgrid stress r??s = p(uiUj — UiUj) is introduced. T*?

S
 is related to the 

correlation of the fluctuating velocities Ui and Uj at scales smaller than the filtering 
dimension (the local grid size). Hence, such terms are called subgrid terms and 
denoted using an sgs superscript. 

• Energy conservation 

The exact total energy equation is filtered into: 

dpE       d -L 1  
dt       dxj . 

which again is strictly equal to 

p ( UjE) + UjP + q3; — UiTji   =0 (2.31) 

dpE       3 

dt      dxj 
puJE + ujP + g--uiT-l + Hs

j
9S + afs   =0 (2.32) 

where the terms H*gs and os?s correspond to H^gs = p f EUJ — EUJ ) + (UJP — PUJ) , 

and aSj9S = -(WT\J - U{f^). 

Species density conservation 
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Filtering the equations that govern the species conservation leads to the following 
relations: 

dpYk+ d 
dt       dxi 

Re-arrangement of those terms leads to: 

?(nui + nVk)]=0 (2.33) 

dpYk+   d 
dt    ' dxz Yp (YA + YkVl'k) + Y%" + *&] = ° •       (2-34) 

where the terms noted Y^3 and 8S!,
k
s correspond to Y^a = p (uiYk — uiYk), and 

e\% = p (v~*Yk - KkYk) 

• Equation of state 

The perfect gas EOS is used throughout this study. Filtering this equation leads 
to: 

P   =   PRT = pRT 

=   pRT + -pJluT
sgs y 

where Tsgs is the sum of the subgrid species-temperature correlations. 

TS9S = V YhT ~ YhT (2.36) 
^     MWk 

K       ' 

2.3     Closure Model for the LES Equations 
From the initial conditions and the time integration of Eqn. 2.28, 2.30, 2.32 and 2.34, 
the variables p, ui, E and Yjt are known. The filtered continuity equation is fully 
closed. The other governing equations are unclosed and all the subgrid and filter 
terms in these equations require some evaluations or modeling. The total energy 
being the sum of a kinetic and an internal contribution, the Favre averaged total 
energy E is given by: 

E   =   e + hukUk 
=   e+ ~UkUk + \ (ukuk - ukuk) (2.37) 
=   e + \ukuk + ksgs 

Here, ksgs denotes the un-resolved, or subgrid part of the kinetic energy. The filtered 
internal energy is given by: 

N, NS .f Na 

e = E Y#lk + E Y" /   °vAT)dT + J2 K9a (2.38) 
fe=i it=i     ^T° fc=i 

Provided that Es
k
gs is evaluated, the Favre filtered temperature can be obtained. 

The filtered stress tensor in the momentum equation is computed in analogy to the 
unfiltered Navier-Stokes equations as follows: 

T- = 2p{f) (s^ - ^SkkSiA (2.39) 
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where Sij represents the rate of filtered strain. Similarly, the filtered heat flux vector 
and the filtered species diffusion velocity are computed as: 

q. = -«(T)^- +p^2Ykhk(T)ViJk + q3/3 (2.40) 

Vit^—J-^- 2.41 
Yk dxi 

All the subgrid-scale terms, denoted with a sgs superscript, are unclosed, and 
therefore, require specific modeling. These terms are: 

T
393

 = piu^Uj - UiUj) (2.42) 

H393 = p (Eul - Eu,) + (u~P - UiP) (2.43) 

°?s = (ujn] - «i^7) (2-44) 

Y393 = ~p (^Yk - UiYkj (2.45) 

C = P (^ - ^"Yk) (2.46) 

<f = ~P (hkYkVl,k ~ hkYkVi,k) (2.47) 

Ts9s = J2(YkT - YkT)/MWk (2.48) 
fc=i 

Es
k
9S = Y%^{T)-Ykek(f) (2.49) 

It should be noted that, in the expressions for 93g
k
3, q39

k and E^93, the repeated index 
A; does not imply summation. The closure strategy to model the subgrid terms is 
presented next. 

An eddy-viscosity type closure is adopted in this study. The eddy viscosity, vu is 
evaluated using a characteristic length-scale, provided by the local grid size A, and a 
characteristic subgrid velocity, obtained from the subgrid kinetic energy ksgs, so that 
vt = CvAy/k"33. The unclosed terms in the momentum equation, the subgrid stresses 
T3fs, are then closed as: 

T
393

 = -2put (Sij - ^SkkSii] + ^kS9SSi: (2.50) 

The two unclosed terms in the energy equation, H3g3 and a393 are modeled together: 

ftUsgs       75 ffT 

HT + °r = ~(m + ^-9^^ + ^ (2-51) 
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The subgrid diffusion of species mass fractions, Y^3, is also modeled using an eddy- 
diffusivity assumption, as: 

The diffusions due to subgrid fluctuations in species diffusion velocity, 9S9
k
s and q*^.4, 

are neglected in the present study. All simulations in this study are non-reactive, 
and the impact of these diffusion terms is expected to be small. Also, T"9" and E^98 

are usually found to be very small (Fureby and Moller [1995], Veynante and Poinsot 
[1996]), and will be neglected in the present study as well. The determination of the 
local value of the subgrid kinetic energy ksgs is needed for the evaluation of the eddy 
viscosity, and is described next. 

2.3.1     Derivation of the kS9S Closure Model 

The subgrid kinetic energy is obtained using a transport equation model. The exact 
governing equation for the subgrid kinetic energy is hereafter derived, and the different 
contributions to the evolution of ksgs are identified. 

• Filtering of the Total Kinetic Energy Equation 

The non-filtered equation for the kinetic energy is obtained from the Navier-Stokes 
equations by multiplying the i— momentum equation by uf 

ud^ + Uid^ul + ud_P5ll_udrll = 0 (253) 

Applying the chain rule, and calling the mass conservation Eqn. 2.1, it is straightfor- 
ward to show that: 

dpK     dpiijK        dPdu c?7v,- 
dF + Jk- + u^'u^ = 0 (2-54) 
\J \J KJJb f KJ Ju o \J Ju i 

where K = l/2(uiUi) is the kinetic energy per unit mass. Filtering the previous 
equation, and using Favre-filtering, the governing equation for K reads: 

dpK     dpujK        dP5a        dr., 

\J V \J Ju -i \J Ju T \J Ju i 

• Deriving the Resolved Kinetic Energy Equation 

The governing equation for the resolved kinetic energy is obtained similarly. Mul- 
tiplying the filtered momentum equation, Eqn. 2.30, by the filtered velocity iii, gives: 

Again, using chain rules and the filtered equation for mass conservation, Eqn. 2.28, 
the equation for Kres = \uiUt is reached: 
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• Deriving the Subgrid Kinetic Energy Equation 

The un-resolved kinetic energy, ksgs, is the subgrid part of the filtered total kinetic 
energy: ksgs = K — Kres. Subtracting Eqn. 2.57 from Eqn. 2.55 gives: 

at oxj y   '  axj '  oxj   J        y   ' OXJ ' ax} j in ro\ 

-   nt^ = 0 

The second term in this last equation can be re-arranged into: 

dp (UJK - UjKresj      dpuk3gs     &P \uiK ~ UjK) 

dxj dxj dxj 

so that the convective term for ksgs is obtained. Chain rules are used to re-arrange 
the contributions that involve the pressure and the stress tensor, and the final form 
of the ksgs equation reads: 

—pksgs + ^(pUiksgs) = Tk,9, + pdk.g. + Pk.„ - Dk.,9, (2.60) 
at oxi 

where the different contributions to the k3gs evolution equation have been re-cast: 
Tks9* represents the diffusion of ksgs, pdk,gs is the pressure dilatation correlation, and 
Pk*9' and Dk-3, are the production and dissipation of ksgs respectively. Their exact 
expressions are given by: 

%>» = -Q— ({pKui -pKui - UjT-gs) + (uiP - UiP) - (u]f~ - Uj 7v7)J     (2.61) 

(2.62) 

(2.63) 

(2.64) 

This equation requires modeling since diffusion, dissipation and pressure-dilatation 
correlation cannot be readily evaluated.   The diffusion due to subgrid fluctuations 
in kinetic energy, subgrid fluctuations in viscous stress, and subgrid fluctuations in 
pressure all contribute to the global diffusion of ksgs and each require proper modeling. 
The first contribution (often referred to as the triple velocity correlation) and the 
second are modeled using a gradient diffusion model. First, the subgrid stress work 
is modeled by: 

d - (uln] -UiT~j)       d   (  dksgs \ 
(,—— (2.65) 

Pdk.,g,   = 

Pk'9' 

= pdu1 

dxi 

_      «s- 

-din 

dxi 

,dilj 

dxi 

k,g.,   =    [ 
'    dui  dui 

TlJdxj 

dxi dxi \    dxi 
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Second, the subgrid transport of subgrid kinetic energy is modeled by: 

d [pK u% - pKui - UjTff'j        Q    /   Ut dksgS 

7-T--S- (2.66) 
dxi dxi \ OK  dx 

where OK is a model constant. 
The diffusion due to subgrid pressure fluctuations is often neglected in LES of 

flow where compressibility effects are small. This approximation might be acceptable 
in low Mach number flows. However, as will be seen later, this contribution is fun- 
damental in the context of shock / turbulence interactions, and requires modeling. 
Following the eddy-viscosity formulation used in the present study, this term is closed 

as: ~    _ 
~p~vtR dT 

ulP-ulP = pR(ulT-ulT) = -^^^- (2.67) 
Op   OXi 

Noting that this diffusion term is directly related to the subgrid diffusion of enthalpy 
in the governing equation for the energy conservation, the closure coefficient oP is 
taken to be the same, that is, the turbulent Prandtl number Prt. The global model 
for the diffusion of subgrid kinetic energy reads: 

T     _   d 
dxi 

-put       \ dkS9S     -pvtR dT 
+ H "5— + ak        )   dxi        Prt dxt 

(2.68) 

For high Reynolds number flows, the dissipation of turbulent kinetic energy occurs 
mostly at the small scales. Its expression is universal and depends on the energy 
transfer rate within the inertial range. In compressible flows, however, the dissipation 
of turbulent kinetic energy has contributions from the solenoidal and the dilatational 
fields. Most models for the compressible part of the dissipation evaluate this term as 
a function of the solenoidal contribution, with a dependence on the turbulent Mach 
number, as reviewed earlier. The analytical work of Ristorcelli [1997] and Fauchet and 
Bertoglio [1998] showed that the actual dependence is on Mt

4, which remains small 
for most flows of practical concern. Furthermore, the relation between solenoidal 
and compressible dissipation scales as the inverse of the Reynolds number. The 
contribution of the compressible part is then very small compared to the solenoidal 
part, and is therefore neglected in the present model. By analogy with the Kolmogorov 
concept of energy cascade, and assuming that the cutoff scale lies within the inertial 
range, the dissipation of subgrid kinetic energy is assumed to be entirely determined 
by the characteristic turbulent velocity scale (based on ksgs) and the characteristic 
length-scale (the local grid cell size), so that: 

Dk,9s = -pct{kS9Sf'2 /A (2.69) 

The last unclosed term in the governing equation for ksgs is the pressure dilatation 
correlation. Here again, this term is often neglected in simulations where compress- 
ibility is not expected to play a major role, but does require a proper modeling in the 
context of high-speed flow simulations. The study of Ristorcelli [1997] shows that this 
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term varies with Mt
2, and depends on the departure from equilibrium, that is, the dif- 

ference between production and dissipation of turbulent energy. The present closure 
formulation uses this scaling analysis to model the pressure dilatation correlation as: 

2 

pdk.9, = apdM
s

t
9s2 ( ^^ ]   (JW - Dk,g,) (2.70) 

D k,g, 

where M^9"   is the turbulent Mach number based on ksgs, and S is related to the 
total strain rate: 

S2 = \S13S13 (2.71) 

The final form of the evolution equation for the subgrid kinetic energy used here 
is finallv obtained as: 

£pk~ + £ (W)  = £ [(m + M) *£• + ^g" 

(2.72) 

2.3.2    Evaluation of the Model Coefficients 

2.3.2.1    Nominal Values of the Closure Coefficients 

The closure for the LES equation and for the k39" equation is now complete, and 
uses six closure coefficients, (c„,c€,erfc, Prt, Sct,ap(i). Nominal values for cu and ce 

can be obtained from theoretical considerations. The dissipation coefficient can be 
determined from an assumed model turbulent spectrum. The Pao energy spectrum 
(Pao [1965]) is a good approximation for the energy spectral distribution at high 
Reynolds numbers of isotropic flows: 

E(K) = at3K~3exp(--a(KT])^) (2.73) 

where a is the Kolmogorov constant (a « 1.5), n the Kolmogorov scale and e the 
total dissipation. This model spectrum contains both inertial and dissipative ranges. 
Considering K,C the cut-off wavenumber, given by KC = n/A (see, e.g. Pope [2000]), 
the subgrid kinetic energy is: 

/»oo o 

ksgs =  /    at*K~3exp(--a(Kr))3)d K (2.74) 

Assuming that the cutoff length-scale is well within the inertial, far from the dissi- 
pative scales, so that A/n » 1, or in other form, Kcn << 1, the exponential term 
remains very close to 1, and ksg3 is approximated as: 

«l«-i«k=^J      ^j (2.75) 
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so that the total dissipation is related to the subgrid kinetic energy: 

2\3/2^3/2.   nn01n
3/2 

e = (M     (fc^)3/2Kc = 0.931 lJ (2.76) 
\3aJ A 

The spectrum of dissipation is obtained from the energy spectrum as D(K) = 2VK
2
E{K). 

Its integration between KC and oo gives efc»9»: 

tsgs = 2i/ /    ae3K_3K2exp(--a(K77)3)(i K = e exp(--a(Kcr/)3) (2.77) 
2   v   // , rv   2 

Again, the exponential term is assumed to be fairly close to 1, so that the dissipation 
(i^sgs ^3/2 

of subgrid kinetic energy is given by esgs s!t = 0.931i—=•—. 
Spectral closure theories (Kraichnan [1976]) can be used to evaluate the eddy 

viscosity formulation as ut = 0.441a-3/2 ^E(KC)K.~
X
 . With the Pao energy spectrum 

and the expression for the total dissipation obtained earlier, one gets: 

2/3 0.931(A:S9S)3/2V      -| 
vt=0.261\la[- v- )      Kc

5exp(--a(«c7?)3) (2.78) 

The exponential factor is again neglected, and since KC = 7r/A, the eddy viscosity can 
be evaluated:   

0.261v/q0.9312/3 ,/UgT\ 
Ut   ~ *i/3        Vfc    A (2 79) 

=   0.067Vks9°A v ' 

This evaluation of the closure coefficients leads to c„ = 0.067 and ce = 0.931. This 
constant coefficients closure has been frequently used, and shows good results in many 
cases. It should be noted however that these coefficients have been evaluated for a 
given assumed spectrum, with the assumption of a very high Reynolds number flow. 
In particular, Lesieur and Metais [1996] discuss the scalings for spectral closures, 
and point out that a spectrally averaged eddy viscosity along with the constraint of 
subgrid-scale kinetic energy dissipation being equal to e could lead to an expression for 
the eddy viscosity as vt = 2/3Q~

3
^
2
^E(KC)K~

1
. CV would then be evaluated as 0.101, 

highlighting some of the uncertainties in the determination of the closure coefficient 
for subgrid terms in physical space. 

2.3.2.2    Dynamic Evaluation of the Closure Coefficients 

In general, it can be expected that the values for the closure coefficients depend on 
the configuration, and vary in both space and time. They should then be computed 
as a part of the solution. The ksgs closure model presented here has been extended 
in order to evaluate dynamically these coefficients as a function of the local flow 
properties. This method, the localized Dynamic ksgs Model (LDKM) was originally 
developed for the simulation of incompressible flows by Kim and Menon [1995]. The 
formulation of the dynamic model is hereafter presented. 

The concept of dynamic modeling, introduced by Germano et al. [1990], is based 
on an explicit filtering of the exact filtered equations and of the model formulation, 
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Resolved sgs - Model 

sts - Model 

testscale - Resolved 

_i i i i— 

Figure 2.1: Representation of the subgrid and sub-testscale regions in a model 
turbulent energy spectrum, and modeling assumptions for the dynamic procedure of 
Germano et al. [1990]. 

and is schematically illustrated in Fig. 2.1.  Noting / the explicitly filtered variable 
/, and dropping the density for clarity, the filtered subgrid stress leads to: 

Ttf    = UiUj - UiUj 

which is re-arranged into: 

T*jS =  ( UiUj — UiUj) — f UiUj — UiUj 

(2.80) 

(2.81) 

The first term on the right hand side of this equation resembles a subgrid stress, but 
for a filter at a new level, hereafter referred to as sub-testscale level, and rt*

ts is the 
sub-testscale stress. The second term is called the Leonard stress, and is directly 
computable from the resolved field. Assuming that the subgrid stress is modeled as 

7-^ = /(4, A), then1   : 

/ (Sij, Aj = \UiUj - UiUj) - (uiUj - UiUj) (2.82) 

Furthermore, modeling the sub-testscale stress with the same closure approach, one 

lrThe  (   )  symbol is used here to denote the application of the test-filter, as the hat symbol 
cannot be sufficiently extended to cover the whole expression. 
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Resolved       ses - Model «g 

Testscale 
Resolved and modeled 

Figure 2.2: Representation of the subgrid and testscale regions in a model turbulent 
energy spectrum, and modeling assumptions for the LDKM. 

gets: 

/ (Sij, Aj = / ( Sij, A j - (uiUj - UiUj) (2.83) 

The closure coefficient that appears in the function /(.,.) can be obtained, assum- 
ing it is constant within the explicit filtering. This method was first applied to the 
dynamic Smagorinsky model (DSM), but the method was found ill-posed, as a di- 
vision with an un-bounded denominator was involved in the final expression for the 
Smagorinsky coefficient. Stabilization of this model required averaging over the ho- 
mogeneous directions of the flow. This dynamic model showed improved predictions 
compared to the constant coefficients Smagorinsky model. Extension of this method 
to other closure models has been performed. It should be noted that a Dynamic ksgs 

Model (DKM) has been developed using the same principle as in the DSM, but again, 
the method for computing the closure coefficient in the momentum equation was still 
performing a division with a denominator that could reach zero. This issue was again 
circumvented by averaging the coefficient along directions of homogeneity. 

The LDKM method has been developed in a truly localized fashion, without any 
need for averaging. Rather than considering that the model used for T*?

3
 could be 

extended to the modeling of r*ts, a similarity between the testscale Leonard stress Ci3 

and T*J
S
 is assumed, as illustrated in Fig. 2.2. It should be noted that such a relation 

has been experimentally observed and reported by Liu et al. [1994a]. Considering the 

29 



Favre averaged testscale Leonard stress (the density is now included for completeness): 

Cij = ?(*B--BB) (2.84) 
V p     p p ) 

The testscale resolved kinetic energy is then given by the trace of the Leonard stress 
tensor: 

test _ ICkk _ 1 (pUkUk _ puk puk 
2   n        2 V P       z \    P P    P 

(2.85) 

The similarity in form between Leonard stress at the testscale level and subgrid stress 
tensor can then be expressed mathematically as: 

CtJ = -2c„V^A   (S^ - l-^Sl3 j + \ckk5tj (2.86) 

or, identically: 

dj = -2cuV¥^A  (pSzj - ^pSkkSiA + pktest6tJ (2.87) 

dj, ktest and pSij can be computed from the resolved fields of velocity and density. 
c„ remains the only unknown in this equation. The closure coefficient is however 
over-specified, as six independent equations are obtained from this relation. The 
redundancy is removed using the least-square method proposed by Lilly [1992]. The 
testscale stress tensor model error tensor E^ is defined as: 

Etj = C{j + 2c„Vk^A  (pS^ - ^pSkkSiA - ^Ckk5ij (2.88) 

This tensor represents the differences between exact subtest-scale stresses and mod- 
eled stresses. A minimization of the r.m.s. error is enforced. Mathematically, this 
consists in ensuring that the derivative of EijEij with respect to the model coefficient 
c„ is zero. This expression reads: 

OK,, K,, 

where: 

3 
and 

-^ = AMijC'ij + ZCvMijMij = 0 (2.89) 

C'tJ = Cl3 - \Ckk6ij (2.90) 

M; = v^A (pSij-^pSkkSi^ (2.91) 

Finally, the expression for c„ is obtained: 

Cv~    2MiiMii »ij"" iij 
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The evaluation of the coefficient c„ requires a division, but the denominator is a well- 
defined non-zero quantity. Consequently, this dynamic formulation is stable, and can 
be applied in a truly localized manner. It is also worth noting that, even though 
Mij appears at both numerator and denominator, the tensorial notation M.ijM.i}- 
implies a distributive multiplication, hence it is not possible to cancel M.ij out of the 
numerator and denominator. It is also worth noting that an evaluation of the model 
coefficient based on the production of ktest from exact and modeled Leonard stresses 
leads to the same formulation of the closure coefficient. The two production terms 
are: 

f> filter pSjj   _  /.model P^ij 
~*7 9 U 

which give: 

(2.93) 

So that: 

djpSij = (-2cuVh**A (pSij - ^pSkkSiA + ^CkkSiA pSl} (2.94) 

C =    ^% (2.95) 
-2MijpSij 

Noting that both £'-, appearing in the numerator, and M.^ in the denominator 

are traceless, it is strictly equivalent to replace pS^ in the previous expression by 

pS^ - pSkkdij. Then, 

c„ = 

-2Mij I pS^ - \pSkk&ij j 

(2.96) 

Multiplying both numerator and denominator by y/ktestA, one gets exactly the rela- 
tion: 

Cv = ~2M13M13 
(2-9?) 

In order to determine the closure coefficient for the dissipation of ksgs, the gov- 
erning equation for ktest is used. Its derivation is very similar to the derivation of the 
kS9& governing equation, and reads: 

-Kipktest + — {^iktest\ = Tkt,,t +pdkt*.t + Pfct«t - Dkte,t (2.98) 

where the expression for the diffusion, pressure-dilatation correlation, production 
and dissipation at the testscale level are fully expressed as functions of the resolved 
variables and of the subgrid stresses only.   In particular, the production of ktest is 

Pkte,t = —CijpSij/p, and its dissipation is given by: 

rs9ssduj     f=r*-^ l ^duj 
ft—our-«*•)£-<*-ir>?.^ <2"> 
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Under the similarity assumption, the dissipation of ktest is modeled with the same 
formulation as the dissipation of ksgs, D^st = pct(k

test)3^2/A, where again, only the 
closure coefficient remains unknown. With the following notation: 

t-'ij — & \ Jij        rt^kkOij 

the difference between filtered and subgrid stresses is given by: 

2 
P»9* _ Veff^ij - -pkS9S5i 

(2.100) 

(2.10i; 

where pejf = p + pt-  pe/f is assumed to be constant over the width of the explicit 
filter. The expression for the dissipation coefficient ct is given by: 

cf = 
Peff 

p{k y. ( Utest 
)• 

~~ duj     ~ _duj 
p^dx~~^Pdx~ 

duk     r;—- duk 
oxk dxk 

(2.102) 
In compressible flows, the closure for the energy equation plays a fundamental 

role, as strong variations in the energy / temperature fields are associated with the 
compressibility of the flow. The turbulent Prandtl number, used to close the energy 
equation, has been shown in experimental and DNS studies to vary spatially and 
temporally for a given turbulent flow. Furthermore, the statistical average of Prt 

has been found to be flow-dependent. It is generally found that Prt remains of the 
order of unity. Chambers et al. [1985] report an average turbulent Prandtl number 
Prt = 0.4 in an experimental study of turbulent mixing layers, with spatial variations 
between 0.3 and 0.6. Using direct simulations of decaying incompressible isotropic 
turbulence, Moin et al. [1991] showed that Prt could be assumed approximately 
constant, Prt ta 0.4, but that compressibility could significantly impact the theoretical 
value of this closure coefficient which varies between 0.25 and 0.6. Also, Pham et al. 
[2007] studied the evolution of a turbulent thermal plume using both DNS and LES, 
and showed variations of Prt between 0.2 and 0.7. It appears clearly from these exact 
evaluations of Prt that assuming a constant value for this closure model can be a 
rather limiting approach. 

In the present work, the dynamic evaluation of the closure coefficients is extended 
to the local computation of the turbulent Prandtl number, using the same similarity 
assumptions as for the other closure coefficients. At the testscale level, the expression 
for the temperature and velocity correlation, rij, can be computed exactly from the 
resolved field. 

rii = 
pu{T pUi pT 

P   P 
(2.103) 

Using the same modeling assumption as in the subgrid term case, the testscale velocity 
temperature correlation is given by: 

piliT     -pux-pT      CN/A-^A _dT 
P- 

P   P pPrt dxi 
(2.104) 
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Prt is the only unknown of this system of three independent equations. Again, the 
over-specification is solved using a least-square method to minimize the error vector. 
Solving for the inverse of the Prandtl number, the following expression is obtained: 

"*» - -as (2105) 

where 

dt = ^  p— (2.106) 
p OXi 

The formulation of the model for the pressure-dilatation correlation is given in 
Eqn. 2.70. Again, the similarity assumption is made between subgrid and testscale 
pressure dilatation in order to evaluate the closure coefficient avd- pd^nt can be 
expressed as: 

-^du,     P _dui 
pdktc.,t = P- 3 p— (2.107) 

OXi p      OXi 

The model associated with this expression reads: 

pdkt»t = apdM
l

t
est2 I ^^ I   (Pku.t - £>*««.) (2.108) 

Detest 

A single scalar expression is obtained for the closure coefficient: 

Ff& - f/f p^ 
apd =     dx'      2        

dx'  (2.109) 

It should be noted that the denominator depends on the departure from equilibrium at 
the testscale level. If the production of ktest balances the dissipation, the formulation 
is found ill-posed. The pressure dilatation correlation is expected to be relatively small 
in most case, reaching 10% of the dissipation in non-equilibrium flow configurations. 
This is used to bound the value of ap(i and prevent divergent values of the modeled 
pressure-dilatation correlation. 

The other coefficients ak and Sct could also be evaluated dynamically, if needed 
using a similar strategy. However, the impact of the ak is small compared to other 
terms in the governing equation for ksgs, and is therefore, assumed to be constant 
(cr/t = 1). The turbulent Schmidt number is taken to be equal to 0.9. This latter 
approximation is acceptable for simulations where species play a passive role. 

2.3.3     Realizability Conditions 

Vreman et al. [1994] showed that if a positive semi-definite filter, such as the top-hat 
filter, is used within an LES formulation, the subgrid stresses have to be positive semi- 
definite. These conditions, referred to as the realizability constraints, were found to 
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be satisfied by the LDKM formulation most of the time during the computation of 
well resolved turbulence (Nelson and Menon [1998]). However, the strong and very 
localized variations induced by shocks can make this property difficult to satisfy over 
certain regions of the flow. An explicit enforcement of the realizability constraints is 
performed in this study. The realizability constraint is given by: 

sgs      sgs      sgs 
11 i T22 I T33 > 0 

Ua9s|2 
lT12 1 < sgs sgs 

Tl 1 T2 2 
1 sgs\2 
l'23 1 < sgs sgs 

T2 2 T3 3 

Fl3 1 < sgs sgs 
'11 '33 

(2.110) 
i»Tsgs 

det[r°f}    >   0.1   33 

With the closure adopted in the present study, the three intermediate relations are 
re-arranged to show: 

s<;s2    ,      s<js2   ,      sgs2 ^     sgs   sgs    .      sgs   sgs    .      sgs    sgs ic\ i i i \ 
T12      +r13       '   T23      -iTllr22   +rllr33   +r22r33 V^-111) 

Noting that T*?
S
 — —2pvtYlij + 2/3pkS9SSij, one can re-write the previous relation as: 

(2^t)
2(S?2 + S?3 + S23)   <   (2pi/f)

2(SnS22 + EnS33tS22E33) 
l(pks9s2pist)(Zn + £22 + E33) (2.112) 

+   2>p2kS9s2 

The trace of the tensor Ey is 0. Hence, the second term on the right hand side of 
the equation given above can be canceled out. The first term can be re-expressed as: 

EnS22 + S11E33 + E22E33 = -(En + E22 + £33)   — -(En + E22 + E33)     (2.113) 

= 0 

The equation given above can then be formulated: 

K)2(£2
2 + S2

2 + % + l&u + £22 + §3)) < !**•» (2.114) 

Given that ut is given by vt = c^y/k^A, one can get an upper bound for the e„ 
coefficient as: 

%/hags 

Cu <    I. ~_ (2.115) 
v/35 A 

where 5 is the strain rate magnitude defined earlier. These constraints are explicitly 
enforced everywhere. 
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CHAPTER III 

COMPUTATIONAL METHODS 

As reviewed earlier, the computational resolution of turbulence in high-speed flows is a 
challenging task, as it requires a numerical scheme that combines a fine capture of the 
turbulent structures in the flow with low inherent dissipation, and a shock-capturing 
capability, to resolve all discontinuities in the flow as a part of the solution. In order 
to allow for such simulations, a hybrid scheme is developed in the present study that 
switches dynamically and locally between two numerical schemes in different regions 
of the flow. The McCormack scheme will be first presented, and its extension to 
fourth order spatial accuracy will be examined. The shock capturing methodology 
developed and implemented in the framework of this hybrid approach is described 
afterwards. Finally, the smoothness sensor used to assess the numerical switch is 
described. 

3.1    Numerical Integration 
3.1.1    Finite Volume Method 

The governing equations described in Chap. 2 can be written in the following form: 

W + dJ^     OF),     d_F±_ 
dt +  dx  +  dy + dz   ~b [6-1} 

where Q is the vector of conserved state variables, Fx, Fy and Fz represent the fluxes 
in the x, y and z direction respectively, and the vector S contains all the source terms. 
A finite volume approach is used in the current study ; the governing equations are 
integrated over a control volume V (a computational cell), delimited by a surface E, 
as follows: 

With Green's theorem, the previous relation is re-expressed as: 

~K7 + y f {Fx nx + Fy ny + Fz nz) dT, = S (3.3) 

where Q and S are averaged over the volume of integration, F over the cell interfaces, 
and (nx,ny,nz) are the normalized Cartesian components of the elemental surface 
normal vector. 

In the structured framework adopted here, any computational cell of coordinates 
(i,j,k) is delimited by 6 interfaces (£/),=1 6 located at (i ± 1/2, j, k), (i,j ± 1/2, k), 
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and (i, j, k ± 1/2). Noting more generally Fi = Fxnx + Fyny + Fznz the corresponding 
fluxes evaluations, the increment in the cell-centered variable Q is computed as: 

1=1,..6 

3.1.2    McCormack Time Integration 

The time integration is performed using a two-stage Runge-Kutta method. As will 
be presented later, the fluxes evaluation in the McCormack method differ during the 
two stages of the time-integration. For this reason, the two stages are often called 
predictor and corrector, and their formulation is given by: 

Q(*)       =   Q(n) + dQM (Predictor) 

Q (n+l)     _     I 
2 

[QW + Q(*) + rfQ(*)]    (Corrector), ^ 

Here, dQ^ and dQ^ are the increments in state variables, obtained as in Eqn. 
3.4, based on the variables Q^ and Q^ respectively. This results in an explicit 
methodology with second order accuracy in time. This time integration, originally 
chosen as a part of the McCormack scheme, is applied to both the central and the 
upwind schemes presented hereafter. The spatial accuracy of the overall scheme is 
determined by the accuracy in the evaluation of the fluxes at the cell interfaces. The 
smooth flow solver will be presented first, for both second and fourth order spatial 
accuracies, followed by a description of the upwind shock-capturing flux computation. 

As mentioned above, the scheme used here is explicit. The increments computed at 
a given sub-iteration are based on the field at that sub-iteration. The superscripts in 
Q^ or QW are redundant, and are dropped in the following description of the schemes 
for clarity. Also, the numerical schemes hereafter described are used to evaluate the 
fluxes at the interfaces. The flux at a given i + 1/2 interface is determined from the 
cell variables of varying i's, but for fixed j and k. In order to simplify the notations, 
only the index corresponding the i location will be kept, j and k being implicitly fixed. 
Furthermore, it should be noted that the extension of the computational operations 
described for the i-direction to the other two directions is straightforward, the indices 
i, j and k being essentially interchangeable. 

3.2    A Hybrid Scheme for Supersonic Turbulent 
Flows 

In order to evaluate the state variable increment in Eqn. 3.4, the fluxes at the cell 
interfaces must be evaluated. In order to capture both the discontinuities in the flow 
and allow for the resolution of the turbulent features, a hybrid framework has been 
developed. The flux evaluation is given by: 

Fi+i/2 = K+\/iF-+l/2 + (l - Ai+1/2) F?+1/2 (3.6) 
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where F" is the flux obtained using a low-dissipation scheme adapted to the resolution 
of turbulent flows, presented in Sec. 3.3, whereas Fu is evaluated from a shock- 
capturing scheme, described in Sec. 3.4. Rather than blending the two schemes, the 
current hybrid methodology switches between them. The switch variable Aj+i/2 is 
then given as a Heaviside step function, according to an evaluation of the smoothness 
of the local flow-field, used to determine which scheme is appropriate. 

Several sensors can be found in the literature. In self-adjusting artificial diffusions, 
an explicit diffusive term is integrated to the governing equations, and its strength is 
dynamically computed from some characteristics of the flow variations. Harten and 
Zwas [1972] suggested the following self-adjusting parameter for shock-capturing: 

#1+1/2 — K 
»i+i - <t>i\ 

maxj |0j+i — (f)j\ 
(3.7) 

where K and m are user-dependent constants, and </> a variable that characterizes 
the discontinuity. The denominator captures the largest jump in the flow. These 
coefficients were found to strongly depend on the configuration, the presence and 
strength of the shocks within the simulation. More recently, the Jameson artificial 
dissipation (Jameson and Baker [1983]) was designed to stabilize central schemes in 
shock regions, and has been widely used. Its basis consists in evaluating the curvature 
of the pressure field and to compare it to the average pressure value: 

5l- p^TmTp~Z (3-8) 

Identically, Lapidus [1967] described an artificial dissipation method where the artifi- 
cial viscosity is a function of the velocity divergence. These artificial diffusion methods 
modify the governing equation in order to stabilize the numerical scheme. The con- 
cept of blending and/or switching between two numerical schemes with dispersive 
and dissipative natures is somewhat more recent. 

Several hybrid schemes based on ENO and WENO scheme for shock-capturing 
have been presented. The design of the switching functions has varied from author to 
author. Adams and Shariff [1996], Pirozzoli [2002] have used a switching formulation 
based solely on the gradients in the flow. Let si+i/2 be the gradient in fluxes at a 
given interface i + 1/2: 

St+1/2 = -r  (3.9) 
Axi+1/2 

A spatial location in the flow was considered non-smooth in the study of Adams and 
Shariff [1996] if the following conditions were satisfied: 

1. The modulus of the gradient times grid spacing is larger than a certain threshold 
sl+i/2Axi+1/2 > a 

2. The gradient attains a local maximum |si_1/21 < |SJ+I/2| > | Si+3/21 - 

The more dissipative, shock handling scheme is applied to the three surrounding 
interfaces, (i — 1/2), (i + 1/2), (i + 3/2) if these two conditions are satisfied. Hill and 
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Pullin [2004] suggested a switch based on the smoothness factor computed in the 
context of WENO schemes to define the weight coefficients of the scheme. Later, Hill 
et al. [2006], Pantano et al. [2007] used a hybrid scheme that integrated a slightly 
different smooth flow solver, and changed to a Jameson-type sensor, (Eqn. 3.8) based 
on both pressure and density fields. 

Other smoothness sensors are described in the literature that intend to identify 
shock waves within the computation field. Ducros et al. [1999] described a sensor 
based on the physical observation that, unless very high levels of compressible tur- 
bulence are expected in the flow, the turbulent structures are essentially vortical, 
and the bulk dilatation of the flow is associated with shock waves. The following 
expression: 

.   j'^J     . (3.10) 
||V-<7|| + ||Vx[/|| 

quantifies the levels of compression and was combined to a Jameson sensor for shock 
detection. 

In the present study, not only shocks, but all discontinuities need to be captured 
with the upwind method. Three types of discontinuities found in supersonic flows 
need to be detected, namely the contact discontinuities, sharp flame fronts and shock 
waves. The central scheme employed in the present study, and described in Sec. 
3.3, can efficiently resolve gradients in the flow, but generates numerical oscillations 
in regions where flow gradients change rapidly. Accordingly, the sensor retained for 
the present implementation is based on the curvature of both the pressure and the 
density fields, sufficient to ensure the detection of all three types of discontinuities. 
The generic formulation of the smoothness parameter for variable <j> (</> = P or cp = p) 
is given by: 

5,i = { &$$&&\St      V l*«-2* + A-il>*A (3.n) 
—Sft otherwise 

This formulation of S^ permits a quantification of the changes in flow gradients 
rather than an identification of the gradients alone. For the present study, the coef- 
ficients tp and tp are taken to be equal to 0.05 and 0.1 respectively. The threshold 
values for the pressure and density switches, Sft and Sth are equal to 0.5 and 0.25 
respectively. These coefficients were found from numerical experimentations to yield 
accurate simulations of turbulent flows in the presence of shocks and/or density in- 
terfaces. These sensors identify the regions where the pressure and/or density fields 
show rapid variations and where these variables show significant gradients. This per- 
mits to only capture the heads and feet of the discontinuities. The switch function 
Xi+i/2 is then defined as: 

. (l if max(Spj,Spj+i,Spti,Spti+i) < 0 ,       . 
Al+1/2 ~ i   0 otherwise (lil2) 
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3.3    A Central Scheme for Turbulent Flows 
The numerical scheme employed for the resolution of the turbulent structures should 
have a small intrinsic dissipation in order to capture the evolution of the fluctuations 
at the right rate. As reviewed in Chap. 1, several schemes have been employed in 
the context of DNS and LES. Compact schemes, for instance, have been found to 
have a quasi-spectral behavior, and are as such well adapted to turbulent studies. 
The high computational cost associated with these schemes, the poor behavior in 
gradient regions and the complexity in the scheme formulation for highly stretched 
and skewed grid make them poorly suited to practical studies. The focus of the present 
study being the development of a numerical methodology for complex geometries, the 
smooth flow solver integrated in the present hybrid method uses central differencing. 
High order central schemes have a low dissipation, permit a capture of turbulent 
structures and have grid-conforming capability. 

3.3.1     A 2nd Order Accurate Method - the Original McCormack Scheme 

In order to reduce numerical dissipation, the use of central schemes is preferred. 
Purely central schemes are, however, found to be unstable. Many researchers have 
developed modified central schemes with limiters and/or artificial dissipation to sta- 
bilize these numerical methods {e.g. Jameson and Baker [1983]). The method of 
MacCormack [1969] does not add any explicit diffusion to a central scheme, but 
rather uses the two stages of the time integration method to get a built-in dissipation 
within the scheme. To do so, the fluxes at the cell interfaces are computed using al- 
ternatively backward and forward differencing in the predictor / corrector sequence- 
This combination results in a central differencing method over the entire time integra- 
tion. The numerical fluxes at the interfaces are obtained from the interpolated state 
variables. Noting Q+ k the interpolated state variable at the interface from backward 

extrapolation, and correspondingly Q~ x the result of the forward extrapolation, the 
i+2 

fluxes are computed as: 
F?H = F(QU) (313) 

In the original McCormack method, first order extrapolations are used at each step of 
the sequence. The neighboring cell centers are alternatively used to get the interface 
fluxes as: 

Qi+i =   Qi+i 

C - * (314) 
i-t-2 

This formulation yields second order accuracy in space and time (hereafter noted 
0(2, 2)). The combination of first-order extrapolation within the predictor/corrector 
sequence leads to a higher-order scheme. The backward / forward sequence is alter- 
nated in order to prevent directional bias over the simulation. 
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3.3.2    A 4th Order Extension to the McCormack Scheme 

Higher order schemes are better suited to the computations of turbulent flows. The 
original McCormack scheme having shown good accuracy for many practical problems 
of aerodynamics and turbulence, its predictor / corrector method is a good candidate 
for the design of higher order methods. Gottlieb and Turkel [1976] studied general 
forms of fourth-order accurate schemes with Richtmyer and McCormack time integra- 
tion methods. They proposed an extension of the basic 0(2, 2) McCormack scheme 
to (9(2,4) accuracy, by defining the fluxes based on the extrapolation: 

Ql+i    =   ^{7 Qi+\- Qi+2) 

Q;+1 = i(7Q,-Q,-i) (3-15) 

Nelson [1997] showed that this scheme really is 0(2,3), due to the relation that 
exists between time-step and computational grid spacing, and developed a method 
that truly is fourth order in space. The computation of the fluxes (method hereafter 
called N24 scheme) is obtained from: 

QU   =   g(2Qi + 5Qi+i-Qi+2) 
Q~+\_   =   i(2QI+1 + 5Q!-Qt_1) 

Here again, alternating the backward / forward sequence is used to prevent persistent 
directional bias. 

A stability analysis of the fourth-order extension to the McCormack scheme shows 
that the N24 scheme is unconditionally unstable for the resolution of the linear ad- 
vection equation. It is further shown that the highest order that can be achieved 
with the McCormack methodology that ensures conditional stability is third order 
spatial accuracy This theoretical analysis, based on the resolution of the simplified 
advection equation is of fundamental importance, but no conclusion can be made on 
the behavior of the scheme for the practical resolution of the Navier-Stokes equations. 
This system of equations is far more complex and non-linear. Furthermore, the pres- 
ence of viscous forces stabilizes the practical simulations. Stable fourth-order schemes 
may be obtained within the McCormack formulation for the advectivc-diffusive equa- 
tion with specific restrictions on the grid Reynolds number. In practice, very weak 
numerical oscillations are observed in simulations of turbulent flows using the N24 
scheme. The method used here differs from the original scheme of Nelson [1997], but 
reduces the amount of numerical oscillations and keeps its fourth order accuracy: 

Qi+i      —      -~JgQi+2 + sQi+l + gQi- 

Qi+1      =     —JgQi-1 + iQi + TjQi+2 
(3.17) 

The formulation is extended to non-uniform grid spacings. Following the notations 
of Nelson [1997], as represented in Fig. 3.1, the spacing between the cell center and 

the interface at i + 1/2 is noted AJ   , the spacing between cell center i and cell center 
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Ai= A^ + A^' 

Figure 3.1:   Schematic representing the curvilinear grid spacing definitions, from 
Nelson [1997]. 

i + 1 is A<. Grid stretching in the previous extrapolation procedure is accounted for 
as: 

i-t-2 

,A| 
A Qi + 1 

(3.18) 

<k* = 
>d) 

A,_i Q<_1 + i   14-5*=J AT> 
A,_! 

A^ 
A, Qi 

+ 27  I d  A~ ATTT- J ^l+1 + 27  I      A,+1       J Vt+2 

The evaluation of Qf+1 /2 is used to evaluate the fluxes at the interface according to 
Eqn. 3.13. 

3.4    A Flux-Difference Splitting Scheme for Dis- 
continuity Capturing 

Shocks and contact discontinuities are common features of supersonic flows and re- 
quire proper resolution. Central schemes such as the fourth-order scheme described 
previously, are dispersive in nature, and create numerical oscillations around steep 
gradients, strongly affecting the flow and leading to unphysical values in the computed 
field. The upwind method required in the hybrid framework must be of dissipative 
nature, and to capture strong gradients as a part of the solution. A flux difference 
splitting has been chosen and implemented for the current study, and is hereafter 
described. This approach fulfills the shock-capturing requirement, and has a rather 
low computational cost and a body-conforming capability. A higher-order method 
is achieved by the use of a Monotone Upstream Centered Schemes for Conservation 
Laws (MUSCL) re-construction technique. The resolution of the Riemann problem 
is performed using an approximate Riemann solver, leading to the evaluation of the 
interface fluxes. 
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3.4.1     Interface Reconstruction 

In flux difference splitting (FDS) methods, every cell interface is considered as a sharp 
separation between a left and a right state with different properties. The first step in 
FDS consists in re-constructing this Riemann problem. 

3.4.I.I    MUSCL Interpolation 

The interpolation used in the current scheme uses the MUSCL approach of van Leer 
[1979], in which the flow variables are assumed to have piecewise-linear variations. 
The left and right states for a given interface are evaluated as: 

Ui+l/2 
<(!-€. 

JJR _ /7 e(l-gi+l 
Ui+l/2 - U'+l ~~ 4 

(1-K)A+_1/2(C/) + (1 + K)A-+1/2(C/) 

(1 + K,)A++1/2(C/) + (1-K)A-+3/2([/) 
(3.19) 

where first order piecewise constant extrapolation is used if e = 0, and higher order is 
obtained for e = 1. The coefficient $ is computed from the flattening operation and 
will be described later. The value for K drives the order of the interpolation. Third 
order spatial accuracy is obtained for « = 1/3. All other values lead to a second order 
interpolation, n = 1 corresponds to a central differencing scheme, whereas K = — 1 is 
a purely upwind interpolation. 

van Leer [1979] introduced the concept of monotonicity in the interpolation proce- 
dure: the evaluation of the states at the cell interface should not create new extrema 
in the field. To enforce this condition, limiters are applied to the interpolation of 
Af_1/2(U). The interpolation technique uses the following differencing: 

A1+l/2(U) = Ul+1 - Ui 

A++1/2(U) = Ai+1/2(U)<t>(rf+1/2) 
*i 

i+1/2 
+3/2 C ) 

l/2(U) 
_  A,_1/2(C7) 

(3.20) 
A

l+i/2(u) = Ai+i/2(C/Mri+1/2) r:+1/2 - Ai+i/2([/) 

where 0 is the so-called limiter. The interpolation reads then: 

Ui+l/2 — ui T       4 

Ui+1 /a Ui+1- e(l-^,+i) 
4 

(1 - K) d>(rt1/2m - Ui-x) + (1 + K) 0(rr+1/2)(t/i+1 - Ui) 

(1 - K) 4>{r-+V2){Ul+2 - Ui+1) + {1 + K) 4>(r++1/2)(Ul+l - Ut) 

(3.21) 
Noting that rT.1/2 = l/r'i+1/2, the overall procedure can be re-arranged into: 

TJL - IT.   1   t(l-gi) 
°t+l/2 — ui ^       4 (1 - «) 0(r+ 1/2) + (! + «) 0(-^)r+1/2 

i/a 

TTR        _ TJ t(l-€i+i) 
Ui+l/2 - U'+l I (1 - «) 4>(r-+3/2) + (1 + K) 0(^-)rr+3/2 

+3/2 

(^i-t/i-i) 

(Ui+2-Ui+1) 

(3.22) 
Several limiters have been developed and used in the past. Five limiters have been 

identified and implemented for the current development, namely: 
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• Minmod Limiter 

This limiter might be most common one. It can be expressed as: 

<t>mm(r) = max [0, min(r, 1)] (3.23) 

• Superbee Limiter 

<l>sb{r) = max [0, min(2r, l),min(r, 2)] (3.24) 

The Minmod and Superbee limiters are actually part of a class of limiters described 
by Sweby: 

(/>0{r) = max [0, min(0r, 1), min{r, /?)] 
l</3<2 [    Dj 

where the minmod corresponds to (3 = 1 and the superbee corresponds to j3 = 2. 

• Monotonized Central Limiter 

<t>mc{r) = max 

• Van Leer Limiter 

0,mzn(2r,2,^-^) (3.26) 

Van Albada Limiter 

1 + r 
All these limiters satisfy a symmetry condition 

Mr) = T^ (3-27) 
1 + r 

<Mr)  =^J (3.28) 

<P{r)=(>(1-) (3.29) 
r yj. 

The relation expressed in eqn. 3.22 is simplified for a symmetric limiter to: 

TL _ TT.   .   t(l-€«) Uti/2 =«+ ^ttrt^M - Di_x) 

'i+l/2 = ^*+l 2i±J"(^(ri+3/2) ^i+1/2 — ^i+1 ~ " 22±J_^(ri+3/2)(^+2 _ ^t+l) 
(3.30) 

showing that the dependence on K of the original interpolation procedure is lost when 
symmetric limiters are used. The implication of this property is that the order of the 
reconstruction depends on the local variations of the interpolated variable, and on 
the limiter used for the interpolation. 

A scheme is said to be Total Variation Diminishing (TVD) if the total variation 
of the solution is diminishing as the simulation progresses. Limiters that satisfy the 
TVD condition lead to a monotonic scheme (Harten [1983]). The limiters used in the 
MUSCL technique ensure a second order TVD property if their descriptive functions 
lie in the region described in Fig. 3.2. The implemented limiters are shown in Fig. 3.3 
and 3.4.   Among the limiters that have been implemented, superbee is found to be the 
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Figure 3.2: Region defining second order TVD schemes (shaded in grey). 

Figure 3.3: Characteristic curves for the Monotonized central (MC), rainmod (MM) 
and superbee (SB) limiters. 
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Figure 3.4:   Characteristic curves for the van Leer (VL) and van Albada (VA) 
limiters. 

most anti-diffusive. It is often considered over compressive, i.e., it tends to produce 
artificial compression and thus to sharpen profiles into discontinuities. Minmod is the 
least compressive option, and provides a great amount of numerical dissipation. More 
details about the design, the use, and the limitations of the limiters can be found in 
reference books on CFD (see, e.g. Hirsch [1997], Tannehill et al. [1997]) 

The reconstruction, Eqn. 3.30 is then fully defined, and can be applied to various 
sets of variables (Berthon [2005]). In the present work, the operation is performed on 
the primitive variables (p.iii, P,J>k). These variables are often used in this context, 
as they permit a crisp capture of the discontinuities, at a very small computational 
cost. 

3.4.1.2    Monotonicity of the Reconstructed States 

The monotonicity of each reconstructed variable is ensured in the method described 
previously by the use of TVD limiters. However, a global monotonicity of the inter- 
polation procedure requires more attention. 

• Conserving the Sign of the Gradients through the Interface 

The monotonicity of the solution is enforced by: 

max(Ui, t/j+i) > U'i > min(Ui, Ui+i) 

max(Ui, Ui+i) > UT 1 > min(Ui, f/j+i) 
(3.31) 

Conservation of the sign of variations across the interface is however not ensured 
by this method. The configuration shown in Fig. 3.5 shows that the results of the 
reconstruction procedure can satisfy the monotonicity condition expressed in Eqn. 
3.31 and violate the global variations of the interpolated variable: Ul+\ — [/, < 0 and 
^i+1/2 — ^i+1/2 > 0- The satisfaction of this extra monotonicity constraint is checked 
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Figure 3.5: Schematic illustrating the gradient violation during the reconstruction 
procedure. 

and enforced in the current procedure.   Violation of this condition is corrected by 
setting: 

U L,new l R,old\ 

~ ol»+*    + Ui+h   > 
jjR,new   TjL,new 
Ui+h       - Ui+h (3.32) 

It should be noted that the initial reconstructed field, UL'°ld and UR,°1
ld, satisfy by 

l+2 t+2 
construction the monotonicity expressed in Eqn.  3.31.  This correction ensures that 
JJ new anj y 'new also satisfy this property. 

• Monotonicity of secondary variables 

The interpolation is performed on a selected set of variables. In the present case, as 
mentioned earlier, the primitive variables are used for reconstruction. Other variables 
are needed for the Riemann solver resolution and flux computation. The left and right 
states of the temperature are required, for the evaluation of the speed of sound and 
the evaluation of the total energy. Temperature is re-computed from the interpolated 
field, rather than extrapolated itself. The monotonicity of this secondary variable: 

max(Ti,Ti+i) > Thi > min(Ti,Ti+1] (3.33) 

is strictly enforced through modifications of the pressure interpolation if needed. 

• Monotonicity of the species mass fractions 

The MUSCL reconstruction is applied to the species densities, and the mass frac- 
tions are recomputed on each side of the interface. This operation requires special 
attention. The values of the limiters for the different species are likely to differ if the 
procedure is performed independently on each one of the species.  The resulting set 
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of mass fraction on a given side of the interface does not satisfy mass conservation, 
namely: 

N. 

E YkIR * i (3-34) 

A re-norrnalization of the mass fraction at the interface has often been used in the 
past (Fryxell et al. [1989], Plewa and Muller [1999]). This method unfortunately leads 
to non-monotonic held of species mass fractions. The method adopted in the present 
study consists in reducing the order of the interpolation of the species to the most 
limiting reconstruction. For the species densities, the reconstruction reads: 

Pl
kii+1   = Pk,i + £iVil   £J"3    (^ (rtl/2(pk))) (Pk,i - Pk,i-l) 

k=0..Ns 

Plv+i = Pk,i+i ~ c(1"|'+l)  jrun   (^ (r~+3/2(Pfc))) (PM+2 - Pk,i+i) 
(3.35) 

2 
k=0..N., 

where k = 0 refers to the reconstruction of the total density. 

3.4-1-3    Flattening Procedure 

Colella and Woodward [1984] showed that post-shock oscillations were found in the 
resolution of strong shocks using shock-capturing schemes. This instability of the 
numerical scheme is related to the self-steepening property of the shocks. Colella and 
Woodward [1984] have found that reducing the order of the reconstruction in regions 
of steep and strong pressure gradients could eliminate these perturbations. The flat- 
tening method described in this reference is implemented in the current formulation 
to evaluate the coefficient & in Eqn. 3.22, employing the same coefficients. A cell is 
identified as being part of a shock wave if the following two conditions are satisfied 

d* =    ]PI?P~PP1\ ~\>0 (336) 

du,i = Ui+i — Ui-\ < 0 (3.37) 

The shock thickness is then measured by relating the pressure gradient across two 
cells to the gradient across four cells, 

SW = §±^Zi (338) -ri+2 — -rt-2 

£i = max 0,min(l,10(Sp,i - 0.75)) (3.39) 

Finally, the limiting factor & in the reconstruction procedure, Eqn.   3.30 is then 
defined as: 

i max(|,|+1),       ifPi+i - Pi-i < 0 
I   max(£,£,_!),     .otherwise 
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With this description of the flattening method, the reconstruction procedure for 
the left and right states of the interface is now complete. The numerical fluxes are 
then obtained from these states using a Riemann solver. The next section describes 
the Riemann solver developed for the current study. 

3.4.2    A Class of Approximate Riemann Solvers - HLL 

A brief description of the HLL Riemann solver family is given hereafter. The HLL 
approximate Riemann solvers have first been developed by Harten, Lax and van 
Leer (Harten et al. [1983]), by expressing a hyperbolic system of conservation laws 
in integrand form. From an initial interface separating two constant states, it is 
assumed that N waves can be formed from the characteristics evolution of the system, 
separating N + 1 constant-properties regions. The knowledge of the jump relation 
through the waves and the wave-speeds permits to obtain a closed form expression 
for the intermediate states, and the associated fluxes. Harten et al. [1983] carried a 
full derivation for a two-waves problem, leaving the wave-speeds as sole unknowns to 
the solver, and have given a mathematical description for the 3-waves problem. 

The 2-waves formulation for the resolution of the Euler equations (with wave- 
speeds expressions given by Einfeldt [1988], Einfeldt et al. [1991], thus called HLLE) 
has been proven robust and adequate for shocks and rarefactions, but appears as very 
dissipative for contact discontinuities. Toro et al. [1994] proposed a correction to the 
derivation of this solver, in order to add the missing contact wave (thus called HLLC), 
whose wave-speed was estimated by an approximation of the particle velocity in the 
intermediate region. The formulation is closed by expressing the jump conditions 
across all wave obtained from the exact Riemann solver for the Euler equations. This 
formulation was further studied by Batten et al. [1997], who related the averaged 
intermediate state to the HLLE evaluation, thus leading to an easy, but yet robust, 
3-waves Riemann solver. It should be noted that this 3-waves solver does not follow 
the original work of Harten et al, as the intermediate wave speed is estimated from 
the 2-wave solver as a correction, and does not reduce to a single-wave problem 
in the physical limit of an isolated discontinuity. Linde [2002] derived a 3-waves 
Riemann solver (often referred to as the HLLL, of the HL3 Riemann solver) that 
follows the original framework of Harten et al. [1983]. The basis of this formulation 
is more general than for the HLLC solver, as no assumption is made on the equations 
solved. The intermediate wave strength and jump conditions are determined from an 
entropy-minimizing procedure. This alternate 3 — waves solver can be used for the 
resolution of any hyperbolic system of equations. In particular, it has been shown 
(Gurski [2005]) that the HLLC formulation is a specific case of the more general HLLL 
formulation for the resolution of hydrodynamics problems. The increased complexity 
of this solver is adapted to complex governing equations (Miyoshi and Kusano [2005]), 
but is not justified in the resolution of hydrodynamics flows, where the HLLC solver 
is found to yield accurate and robust solutions. The derivation that will be hereafter 
presented focuses on the 2-waves formulation of the original HLL method and its 
HLLC extension. 

The Riemann solver developed for this study uses a combination of the HLLE 
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Figure 3.6:  (x, t) diagram of an approximate Riemann problem evolution with two 
characteristic waves. 

and HLLC solvers, in order to reduce the instabilities associated to contact-resolving 
solvers. The simpler 2-waves HLLE will be described hereafter. Following this deriva- 
tion, the wave-speeds estimates, and the modifications that lead to the HLLC solver 
are given. 

3.4-2.1    The 2-waves HLL Riemann Solver 

The derivation of this solver is based on the assumption that an initial one-dimensional 
discontinuity gives rise to 2 waves, a left-moving wave (of Eulerian speed SL), and a 
right-moving one (of Eulerian speed SR). A typical (x,t) diagram for a subsonic case 
is given in Fig. 3.6. The integral form of the Euler equations (see, eg, Toro [1999]), 
reads: 

/ 
[Udx - F(U)dt) = 0 (3-41) 
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where, rioting q = V • n = unx + vny + wnz the interface normal velocity amplitude, 
U and F(U) are given by: 

U = 

P 
fin 

pv 
pw 
pE 

pksgs 

pYk 

F = 

PQ 
puq + Pnx 

pvq + Pny 

pwq + Pnz 

{pE+P)q 
pkS9Sq 

pYkQ 

(3.42) 

Let T be the local time step, T = tn+1 - tn > 0. Note that, in all cases, SL < SR. Let 
us first treat the case where SL > 0, which corresponds to a supersonic flow from left 
to right. The SL wave would lie on the right of the interface, and the flux at x = 0, 
F*, is then obviously given by F(UL). Similarly, if SR < 0, the flow is supersonic, 
from right to left, and F* is given by F(UR). 

Now, let us examine the case where SL < 0 < SR. The lengths Xu Xr can then be 
expressed as Xi = -TSL and Xr — TSR. Expressing the integral form of the Euler 
equations on the system in Fig. 3.6 gives: 

r-Xr 
/0"

A/ U{x, 0)dx - /0
J F(U{Xh t))dt + f_^ U{x,T)dx 

- J°F(U(Xr, t))dt + J°T U(x, 0)dx = 0 
(3.43) 

Assuming piecewise constant variables, and hence, piecewise constant fluxes, the pre- 
vious relation can be re-written as: 

UL.{SLT) -FL.(T) 
+U*.((SR - SL)T) -FR.(-T)+ UR.(- SRT) = 0 

relation that, after re-arrangement, leads to: 

FL _ SLVL _ (Ffi _ SRVR^ 

(3.44) 

U* = 
SR-SL (3.45) 

This shows that once (UL, UR) is known from the reconstruction procedure, and once 
the wave-speeds (SL, SR) are estimated, the variables in the *-region are fully defined. 

The integral relation applied across a given k—wave, k = L/R, results in the 
Rankine-Hugoniot relations that read: 

F* = FL + SL (U* - UL) 
F* = FR + SR (U* - UR) 

From these 2 relations, one can eliminate U* in order to determine F* as: 

S*FL - SLFR + SLSR(UR - UL) 

(3.46) 

F* 
SR-SL (3.47) 
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7HLLE 
t+1/2 

Thus, the flux evaluated at the i + 1/2 interface from the 2-waves HLL Riemann 
solver reads: 

' FL   if        0<SL 

= <   F*    if   SL < 0 < SR (3.48) 
FR   if        SR < 0 v. j — 

Once an evaluation of the wave-speeds (SL,SR) is provided, the HLL Riemann 
solver is fully defined. Several wave-speeds estimates can be found in the literature 
(Davis [1988], Einfeldt [1988], Einfeldt et al. [1991], Toro [1999]), leading to schemes 
of different robustness and dissipation. In the present development, the wave-speeds 
are estimated following the work of Einfeldt (HLLE), as: 

SL = min [qL cL, q-c]    SR = max [qR + cR,q + c] (3.49) 

where q refers to the Roe-averaged contravariant velocity, and c is the speed of sound. 
The Roe-averaged variables are obtained from: 

U = 

i> 

u 
r 

ti- 

ll 

Yk 

pL + 

( \/PLPR 

VeL wL 

HL 

h.sgs L 

+ > J PR 

\ Yk,i 

\TPL< 
w 

'p^pr 

V R 

WR 

HR 

fcsgs R 

Yi k,r 

\ 

(3.50) 

I 
The speed of sound c is not directly obtained from this procedure and is re-computed 
from the Roe-averaged variables c = f(h,p,Yk). These wave-speeds are related to 
the characteristic wave propagation speeds on each side of the interface. It should 
be noted that, for the present LES calculations, the eigenvalues of the governing 
equations are not modified by the governing equation for ksgs. The estimates given 
can be used for the filtered Navier-Stokes equations. 

This solver has proven to be robust and accurate for hypersonic calculations and 
shock capturing purposes. Its assumption of double wave is however limiting, and the 
consequent numerical smearing of contact discontinuities, shear waves, etc... makes 
it unsuitable for viscous and turbulent calculations. An extension of this scheme has 
been developed and presented by Toro et al. [1994], where the middle wave in the 
Riemann problem is taken into account in the derivation of the fluxes. This extended 
Riemann solver is named HLLC (C standing for Contact), and its derivation is given 
in the next section. 

3.4-2.2   Restoration of the Middle Wave - the HLLC Riemann Solver 

It is assumed for the derivation of the HLLC solver that a given interface separating 
two states gives rise to three waves, of speed SL for the left moving wave, SR for 
the right moving wave, and S* for the contact wave. These discontinuities separate 
constant states of the fluid. SL separates UL from UL*', S* is the interface between 
UL* and UR*, while SR separates UR* from UR. This assumption of thin interfaces is 
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Figure 3.7: (x, t) diagram of an approximate Riemann problem evolution with three 
characteristic waves. 

justified for both shocks and contact discontinuities, and is an approximation in the 
case of rarefactions. A typical representation of a subsonic system is shown in Fig. 
3.7. 

Let T be the local time step, T = tn+1 - tn > 0. Note that, in all cases, SL < 
S* < SR. Similarly to the HLL solver, the case of a supersonic flow from left to 
right, where SL > 0, leads to a flux at x = 0 given by F(UL). Again, if SR < 0, 
the flux is given by F{UR). Now, let us examine the case when SL < 0 < SR. The 
lengths Xi and Xr can then be expressed as XL = —TSL and Xr = TSR respectively, 
and similarly, XL* = T{S* - SL), X* = T(SR - S*). The Euler equations in integral 
form, Eqn. 3.41, can be applied to the system represented in Fig. 3.7, leading to the 
relation: 

f-Xl U{x, 0)dx - ff F(U{Xt,t))dt + f^ U(x, T)dx 

+   JTX
X; U(x, T)dx - J° F(U{Xr, tj)dt + jj U(x, 0)dx = 0 

(3.51) 

With the same assumptions of piecewise constant variables and piecewise constant 
fluxes as in the derivation of the HLL solver, the previous relation can be re-written 
as: 

UL.(SLT) - FL.(T) + UL*.((S* - SL)T) 
+   UR\((SR - S*)T) -FR.{-T)+ UR.( - SRT) = 0 

relation that, after re-arrangement, leads to: 

(3.52) 

(5* - SL)UL* + (SR - S*)UR* = FL - SLUL - (FR - SRUR) (3.53) 
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This relation relates the left and right *-variables together, and is often called the 
consistency condition.   Note that assuming a unique *—state, so that UL* = UR* 
recovers the Consistency Condition of the HLL solver, Eqn. 3.45. 

The integral applied around a control volume surrounding a given A;—wave leads 
to: 

jjk (5fcr) _ Fk ^ _ Vk* ( _ skTj + Fk* ^ = 0 ^3 54^ 

so that the corresponding Rankine-Hugoniot relations across the A;—wave, k = L/R, 
are recovered, and read: 

FL* _ pL + SL (TJL* _ f/L) 

FR* _ FR + gR tfjR* _ JJR\ (3.55) 

Identically, the Rankine-Hugoniot relation across the *-wave reads: 

FU = pR* + g* (JJL* _ JJR^ (3_56) 

The relations 3.53, 3.55 and 3.56 give 4 relations for 4 unknowns (FL*, FR*, UL*, and 
UR*). It is however straightforward to show that they are not linearly independent. 
An assumption has to be made on the intermediate states in order to solve this system 
of equations. 

Toro et al. [1994] closed the relation by assuming that the intermediate wave 
had the same properties as a contact discontinuity. Its propagation speed is then 
assumed identical to the particle velocity in the *—region, and this wave retains the 
initial discontinuity in the passive scalar field. This also implies that both convective 
velocities and pressures have to match across the interface. Mathematically, those 
assumption are expressed by: 

(VL* • n = qL*) = {VR* • n = qR*) = S* 
PL* = PR* (3.57) 

(j)L* = (j)L , (pR* = (pR 

where 4> is any passive scalar advected by the fluid ((f) = ksgs,Yk,...). Note that 

the component of the velocity transverse to the interface, 4>k = Vk - (Vk • n) n = 

Vk — 5*n, k = L/R is a passive scalar for this one-dimensional problem. As mentioned 
in Toro [1999], all of these conditions are exactly satisfied by a contact discontinuity 
computed from an exact Riemann solver. 

With these assumptions, one can re-write the four first elements of the vectorial 
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equation expressed in Eqn. 3.53, as: 

(S* 

r>< i ' 

+(SR - S*) 
pR*uR* 

r   „R   i „L      1 
P P 
R    R J       T 

= SR p  U 
-SL p u 

p  V pLvL 

R      R L„ .L /)  w p W 

I 

PV 
pLqLuL + PLnx 
pLqLvL + pLHy 

pLgLwL + pL n. 

pRqR 

pRqRuR + pRTlx 

pRqRvR + pRHy 

pRqRwR + pRUz 

fL pR 

(3.58) 
By assumption, qk* = S* for both k = L/R. Projecting the vectorial momentum 
equation on the directional unit vector gives, along with the first relation, the following 
set of two equations: 

pL*(S* - SL) + pR*(SR - S*) = pR(SR - qR) - pL(SL - qL) 

/*(£* - SL) + pR*(SR - S*)\ S* = PL-PR + pRqR{SR - qR) - pLqL(SL - qL) 

(3.59) 
Replacing the under-braced term in the last equation by the right-hand side of the 
first equation above leads to: 

S* = 
pR_PL+ pLqL(SL _ gL) _ pRqR(SR _ qR} 

pL(SL - qL) - pR(SR - qR) 
(3.60) 

Equation 3.55 is closed and the expressions for all *-variables are obtained. One can 
write the first four relations, for continuity and momentum: 

pk*S* 
ok*S*uk* + Pk*nx 

pk*S*vk* + Pk*ny 

Pk ^*S*wk* + Pk*nz 

pkqk 

pkqkuk + Pknx 
pkqkyk + pkn^ 

pkqkwk + Pknz 

+Sk 

pk' 

! \ 
pk* 

pk*yk* 

/I      7J 

' Pk ' 
pkuk 

pkyk 

pkwk 

I \ uk* Uk 

(3.61) 
the first relation leads directly to an expression for the density in the star region: 

Sk - qk 

p    = p sk-s* (3.62) 

Again, multiplying the second relation by nx, the third by ny and the last by nz, 
adding those three relations, and using the expression for pk* given in Eqn. 3.62 leads 
directly to: 

Pk* = Pk + pk{qk - Sk)(qk - S*) (3.63) 
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Note that the relation expressed in Eqn. 3.63 is valid for both k = L/R, and satisfies 
PL* _ pR*   Let us define (3k, ak and uk as: 

ak =(1k + l 
w k _ Pk(qk - Sk 

(3.(51) 

The state vectors U    can then be expressed as: 

Uk* = akUk + kfrk 

pkuknx 

p u ny 
k     k p u> nz 

P*S*-Pkqk 

{Sk-S') 
0 
0 

(3.65) 

With these relations, the evaluation of the wave-speeds provides the description of all 
states in the Riemann problem under consideration. It is then possible to describe 
the fluxes at i + 1/2 interface. The general expression for these fluxes is given by: 

r?HLLC 
t
l+\/2 

FL if        0 < SL 

FL* = FL + S
L(UL* - UL) if SL <0<S* 

FR* = FR + SR(UR* - UR) if SL* < 0 < SR 

FR if SR < 0 

(3.66) 

The HLLC Riemann solver is then fully defined, and only the wave-speeds are needed 
to close its expression. The estimates detailed in Eqn. 3.49 for the HLLE solver are 
used for the evaluation of SL and SR, whereas S* is defined through relation 3.60. 

3.4.2.3   A Hybrid Riemann Solver - HLLC/E 

Two Riemann solvers of the HLL- framework have been described earlier. The HLLE 
considers a 2—waves evolution to the Riemann problem constructed at the cell inter- 
faces. Such Riemann solvers are called non-contact-preserving, as the intermediate 
wave, the contact discontinuity, is ignored. The improvement brought to this solver 
by the HLLC solver is the restoration of this wave in the problem. The latter solver if 
less diffusive, and improves greatly the results in computations of viscous problems. 

Solvers that simulate 3—waves problems are known to suffer from instabilities in 
shock regions. The odd-even decoupling and carbuncle phenomena can lead to the 
creation of oscillations in the post-shock regions, and to the deformation of shock 
fronts. The HLLC solver is no exception. 2—waves solver do not suffer from these 
instabilities. 

In order to reduce the instabilities that can occur in shock regions, Quirk [1994] 
suggested to switch to a non-contact-preserving solver within shocks thickness. It was 
however found that the instabilities come from the use of contact-preserving solvers 
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in the directions transverse to the shock front. The hybrid solver designed for the 
present study uses this observation to combine HLLC and HLLE as follows. The 
hybrid solver returns the flux evaluation of the HLLC solver by default, but reverts 
to the HLLE fluxes if a shock is detected in the direction transverse to the direction 
of computation. Shock detection is performed following the method given in Eqn. 
3.36 and 3.37. 

rm j   F"+lfi lf (dp<3 < 0 aTld du^  < °) °r (dp>k < 0 aUd du<k < °)       to R7\ 
1+1/2 ~ I F"i/f      otherwise ^'b{) 

The MUSCL interpolation / HLLC/E Riemann solver approach is fully described. 
This scheme is adapted to the resolution of aerodynamic flows with TPG equation 
of state, and can be used on curvilinear grids. The performance of this scheme on 
classical test-cases is reported in Sec. 3.5. 

The presentation of the upwind scheme completes also the description of the hybrid 
scheme developed in the present study. A verification of this hybrid methodology on 
classical and fundamental test cases is presented in App. 3.6. Also, verification of 
the scheme is presented through direct numerical simulations of shock / isotropic 
turbulence interactions in Chap. 4. 

3.5    Verification of the Upwind Scheme 
The capture of physical discontinuities is essential for the numerical simulations of 
supersonic turbulent flows. A shock-capturing methodology has been developed to 
achieve this goal, and its description is given in Chap. 3. The method implemented 
is based on flux difference splitting, as these methods yield robust and accurate res- 
olutions of shock waves and discontinuities, and have limited dissipation. However, 
Riemann solvers, whether they are exact or approximate, have known instabilities 
and limitations. The manifestations of these flaws are well-documented. 

The proposed upwind solver is designed to show a reduced sensitivity to theses 
instabilities. The reconstruction of the Riemann problem uses a flattening procedure 
which prevents under-resolved strong shocks within a computation. Also, the hybrid 
Riemann solver HLLC/E switches to a non-contact preserving solver in the regions 
transverse to shock front. All these methods are included to reduce the instabilities, 
and the aptitude of this scheme in practical simulations will be presented hereafter. 

• Unphysical Values 

Approximate Riemann solvers that are based on linearized estimates of the flux 
differences can lead to unphysical approximations of the total density or of the in- 
ternal energy (p < 0, e < 0) in rarefactions. A consequence is the computation of 
"rarefaction shocks", an unphysical discontinuity computed within a rarefaction fan. 
A few entropy fixes have been advised and implemented that fix this specific failure 
(see Kermani and Plett [2001] for a comparison of the most common entropy fixes). 
For very strong rarefaction computations (near-vacuum states), entropy fixes are not 
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sufficient to prevent the Riemann solver from computing unphysical solutions. HLL 
solvers do not suffer from this instability, do not suffer from such instabilities. This 
property of positivity preservation will be demonstrated later. 

• Post-Shock Oscillations 

Classical Riemann solvers along with a higher order reconstructions show an in- 
stability when a shock is propagating at low grid speeds, that is, when the shock 
propagation speed is small within the frame of reference of the computation. This 
phenomenon, first reported by Colella and Woodward [1984] was shown to be the 
consequence of the self-steepening properties of the shocks. The cure designed in this 
reference paper, the flattening procedure, is implemented in the present formulation 
in order to reduce such instabilities. 

• Odd-Even Decoupling and Carbuncle Phenomenon 

The carbuncle phenomenon is an instability the arises in hypersonic computations, 
when stagnation points create recirculation regions behind bow shocks. The curved 
shock is incorrectly captured, and small kinks form along the shock front. This 
phenomenon has been identified in blunt body calculations, and has been analytically 
analyzed (Pandolfi and D'Ambrosio [2001], Svetsov [2001], Chauvat et al. [2005]). 
Most accurate upwind methods suffer from this instability (Roe scheme, AUSM- 
M, Osher scheme, etc.), whereas flux vector splitting and non-contact preserving 
methods do not show this instability. 

The odd-even instability occurs when shock fronts propagate with the main front 
aligned with the grid. This instability is triggered by small numerical round-off errors 
which grow into strong oscillations (Quirk [1994]). Again, this instability is found in 
many Riemann solver, more particularly, in exact Riemann solvers. And once again, 
non-contact preserving solvers do not seem affected by this perturbation. 

The hybrid solver presented in Chap. 3 was specifically designed to minimize all 
these perturbations. But, as the robustness of the solver should not be detrimental to 
the accuracy of the resolution, the following verification study shows that the upwind 
method is not subject to strong instabilities and remains accurate. 

3.5.1     One-Dimensional Tests 

The ability of the shock-capturing methodology to capture shocks is tested first. 
Two particular aspects are considered: first, the ability to capture shock waves 
at their right propagation speed is tested. This study is performed over a one- 
dimensional domain, since the Rankine-Hugoniot relations are essentially expressed 
in one-dimensional form. The second test focuses on the capture of oblique shocks. 
Here, the extension to multi-dimensional problems over curvilinear grids is tested. 
Also, the amount of post-shock oscillations can be quantified. 

The very first case is that of a normal shock on a one-dimensional grid. Different 
Mach numbers have been tested, and all simulations lead to the same conclusions. 
The case of M = 5.2 is hereafter presented.    A 0.1m long domain is discretized 

57 



— Initial Conditions 
— HI.I.C/E 

Ref solution 
1         '         l 

3«-t06 
1 

- 

2C406 - - 

le*06 - 

I.I. 
0.02 0.04 0.06 

x(m) 
0.08 0.1 

Figure 3.8: Pressure profiles for M=5.2 normal shock with a Calorically perfect gas 
EOS. 
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Figure 3.9:   CP(T) for a thermally perfect gas, and pressure profiles for M=5.2 
normal shock. 

using 100 grid cells. Initial conditions are given by (P,T,M)t = (101325., 300., 5.2) 
from 0. to 0.05m, and the steady Rankine-Hugoniot relations are used for the initial 
jump conditions, leading to (P,T,M)r = (3179578.5,1859.1257,0.4125191924) for a 
calorically perfect gas with a specific heat ratio -y = 1.1. Supersonic inflow is used 
at the left boundary, while a subsonic characteristics-based non-reflecting outflow is 
used at the right boundary. The flow properties reach a stationary state for this 
problem, and the stationary pressure profile is shown in Fig. 3.5.1. The shock is 
crisply captured, with two cell in the shock thickness. The Rankine Hugoniot jump 
relations are correctly captured, and the propagation speed comes out correctly. A 
second test was performed using an arbitrary thermally perfect gas. The dependence 
of the specific heat at constant pressure is represented in Fig. 3.9(a), and the pressure 
profile obtained at stationary state is shown in Fig. 3.9(b). Here again, the Rankine- 
Hugoniot relations are recovered in the simulation, and the shock is captured over 
two cells. 
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(a) Computational grid (b) Pressure contours 

Figure 3.10:  Computational grid for oblique shock calculations (left) and pressure 
contours for Min — 5 and a ramp angle of 15°. 

The performance of the upwind on skewed grid is tested by simulating supersonic 
flows over ramps. The capture of oblique shocks is of fundamental importance for 
practical applications. The simulations performed here consist in a two-dimensional 
channel with an inclined lower wall, as represented in Fig. 3.10(a). The domain is 
discretized using 80 x 36 grid cells. Supersonic inflow and outflow are used at the 
left and right boundaries respectively, whereas the top and bottom boundaries use 
symmetry conditions. The angle of the ramp at the bottom wall has been varied 
between 5° and 25°, and three different inflow Mach numbers were tested: Min = 2, 
Min = 5 and Min — 10. This test was conducted for calorically perfect gases (7 = 1.4). 
The accuracy of the simulation was assessed by comparing the shock angle from the 
computation to the theoretical values (see, e.g. Anderson [2003]). A typical flow- 
field is presented in Fig. 3.10(b). All shock angles were captured accurately, with 
less than 3% error on the shock angles. Small oscillations in the pressure field are 
obtained close to the head of the ramp, which quickly dampen further downstream. 
The present shock-capturing methodology efficiently captures shock waves at the right 
propagation speed and performs well on skewed curvilinear grids. 

A series of test cases for shock-capturing schemes have been proposed in the lit- 
erature. These tests have been designed to assess the capacity of different numerical 
schemes in resolving fundamental features of supersonic flows, as well as some par- 
ticularly challenging configurations. A compilation of such tests is reported in Liska 
and Wendroff [2003], and are repeated using the present shock-capturing formulation. 
These tests, denoted 7T to T7, are performed over a one-dimensional domain. They 
are all based on the physical evolution of an initial interface into a complex flow. All 
cases have a domain that extends from 0 to 1, except case T7 which has a domain 
extending from 0.1 to 0.6. The parameters for these tests are given in tables 3.1 and 
3.2. The initial physical states at the left and right of the discontinuity are given 
in table 3.1. In table 3.2, x0 represents the physical location of the initial interface, 
T is the total physical time of computation. A calorically perfect gas EOS is used 
in all cases. The specific heat ratio of the gases, 7, depends on the problems and 
is reported in table 3.2.   Also, the boundary conditions used in these problems are 
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either supersonic inflows (i in table 3.2), or supersonic outflows (o in table 3.2). 

Table 3.1: Initial conditions for the left and right states in the one-dimensional tests 
used to validate the shock-capturing methodology. 

test Pi Ul Pi Pr UT Pr 
Tl 1 0.75 1 0.125 0 0.1 
T2 1 -19.59745 1000 1 -19.59745 0.01 
T3 1 -2 0.4 1 2 0.4 
T4 1.4 0.1 1 1 0.1 1 
T5 1 1 10 G 1 -1 10 " 

Table 3.2: Parameters used in the one-dimensional tests used to validate the shock- 
capturing methodology. 

test Xr, T 7 resolution left boundary right boundary 
Tl 0.3 0.2 1.4 100 i o 
T2 0.8 0.012 1.4 200 0 i 
T3 0.5 0.15 1.4 100 O 0 

T4 0.5 2 1. 100 i o 
T5 0.5 1 2/3 100 i i 

A last test T6 was performed, where the evolution of two initial interfaces is 
simulated. This interacting blast wave problem was first considered by Colella and 
Woodward [1984], and is a particularly stringent configuration to simulate. For this 
case, the physical domain extends from 0 to 1. The left and right boundaries are 
treated as symmetry boundaries. (p,u,p) = (1,0,1000) between x = 0 and x = 0.1, 
(p,u,p) = (1,0,0.01) for 0.1 < x < 0.9, and (p,u,p) = (1,0,100) between x = 0.9 
and x = 1. The physical time for this simulation is of 0.0038. 

All the results presented hereafter are compared to the results of high resolution 
simulations performed using a Piecewise Parabolic Method (PPM). Tests Tl and T2 
are variations on the classical shock tube test case of Sod. In Tl, the initial interface 
forms a right-moving shock, a left-moving rarefaction fan, and an intermediate contact 
discontinuity. Specifically, the rarefaction fan contains as sonic point, a physical 
feature that some linearized solver cannot resolve correctly With the current scheme, 
all waves are correctly captured at their right speed. The expansion is continuous, 
and the capture of an unphysical rarefaction shock does not occur. Furthermore, the 
dissipation applied to the sharp waves is relatively small: the shock is captured over 
three cells, and the contact spreads over four cells. The latter is mostly dissipated 
from the initial stage of the development. 

60 



0.2 0.4 0.6 0.8 I 

/ ' 1            '           1 
1 

{. 
— Ref 
— HLLC/E 7~ 

- 

5 

4 

3 

2 

i            .            i 

(a)Tl (b) T2 

Figure 3.11:   Results of test cases Tl and T2 for the validation of the upwind 
methodology. 

Case T2 is a variation where the contact discontinuity is stationary in the course of 
the simulation. The peak in density is correctly simulated, with minimal dissipation. 
Again, the shock is resolved over three cells, while four cells are needed for the strong- 
contact discontinuity. 

The test case in T3 evolves into a near-vacuum state in the center of the domain. 
Both the pressure and the density reach values close to 0, but the internal energy 
remains relatively high. The HLLC/E scheme is able to capture this phenomenon 
without unphysical values for the internal energy. The lowest temperatures, formed 
at the center of the domain, are however not fully captured. 

T4 tests the ability to capture slowly moving contact discontinuities. This con- 
figuration is difficult to resolve properly, as the slow motion tends to dissipate the 
density front. In the current simulation, eight cells are necessary to resolve this jump 
in density. The amount of dissipation is for this case significant, but comparable to 
other state of the art numerical schemes (Liska and Wendroff [2003]). 

Test T5 is the classical test case of Noh, where two infinite strength shocks prop- 
agate outwards from the center of the domain. This test shows that, even very strong 
shocks are captured at their right propagation speed, and that the fronts are resolved 
over three points. The use of the flattening procedure smears slightly the shock fronts, 
but permits the resolution of the problem with minimal post-shock oscillations. The 
state at the center of the domain should be strictly constant. A dip in the density 
profile remains from the formation of the shocks. But apart from this impact of the 
initial conditions, the physics of this test problem is well captured. 

The interacting blast waves problem is particularly intricate to resolve. The simu- 
lations of the shock fronts crossing can lead to a strong dissipation of the intermediate 
region. The scheme used here captures most of the structures correctly, and recovers 
the blast propagation speed after their interaction. The amplitude of the strongest 
wave is however under-estimated by the current methodology. 
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Figure 3.12:   Results of test cases T3 and T4 for the validation of the upwind 
methodology. 
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Figure 3.14: Schematic of the perturbed grid used in the odd-even test. 

These one-dimensional tests have shown that the current scheme correctly cap- 
tures the shock fronts and their propagation speeds, with reduced dissipation. The 
contact discontinuity are smeared over a few cells, but their behavior is otherwise 
well simulated. The performance in strong rarefactions is not as good as for the other 
tests. Such configurations are however not important for the type of applications 
considered in the present study. Overall, this shock-capturing method is adapted to 
the capture of discontinuities in supersonic flows, and compares overall well to other 
numerical techniques (presented in Liska and Wendroff [2003]). 

3.5.2    Two-Dimensional Cases 

The good performance of the shock-capturing methodology for fundamental one- 
dimensional problems has been presented. The extension to multi-dimensional tran- 
sient problems can be problematic for several reasons: the instabilities reviewed at 
the beginning of this appendix arise in multi-dimensional problems only. Also, the 
capture of shock propagations at the right speed is fundamental in one-dimension. 
The capture of shock propagation in arbitrary directions in a multi-dimensional prob- 
lem is somehow more challenging. A review of the scheme performance on test cases 
triggering the instabilities is given first. The resolution of spherically propagating 
shocks are presented after. 

The behavior of the hybrid solver on the odd-even decoupling is studied in a 
test-case adapted from Quirk [1994] and Liska and Wendroff [2003]. The problem 
follows the same initialization as test case T8 of Sec. 3.5.1 on a two-dimensional 
grid: (x,y) E (0, l)x(0,0.125). 800 x 10 grid cells are used to discretize this problem, 
and the grid is uniform except at the centerline where a very small perturbation is 
generated. The spacing in the y-direction being Ay = 0.0125, the amplitude of the 
perturbation is 2 10~7 and the formulation of the y-components at the centerlines 
reads: 

YCL = Ymid + {-mO-7 (3.68) 

A sketch of the resulting grid, where the perturbation has been amplified for clarity, 
is represented in Fig. 3.5.2 The test case has been run using five different solvers: 
the Two-Shock Riemann Solver (TSRS) and the solver of Roe with Harten-Hyman 
entropy correction have been considered along with the HLLC, HLLE and HLLC/E. 
In all cases, the MUSCL reconstruction used a monotonized central limiter and flat- 
tening. The computational fields of density right before the interaction of the two 
blast waves is showed in Fig.  3.15.  The top figure obtained with HLLE shows the 
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Figure 3.15: Results of the odd-even test case using several Riemann solvers: HLLE, 
Roe, HLLC, TSRS and HLLC/E solvers respectively. 

physical phenomena correctly: at the left of the domain, a right-moving shock is 
followed by an expansion fan, and on the opposite side, a weaker, left-moving shock 
is followed by another rarefaction fan. This problem is essentially one-dimensional 
in nature. The HLLC, Roe and TSRS solvers are contact-preserving, and develop 
the instability early in the course of the simulation. Before the interaction, the blast 
fronts are strongly distorted. Not only do the post-shock regions show high amplitude 
oscillations, but also do the main fronts show distortion. The HLLC/E solver switches 
to the non-contact preserving in the direction transverse to the shock and dissipates 
the small instabilities quickly. The figure shows an essentially one-dimensional flow. 
Quantitatively, the maximum vertical velocities during the course of the simulations 
have been recorded. The maximum horizontal velocity varies between 13 and 32. The 
HLLC and TSRS get vertical velocities of 3.03 and 3.01 respectively, whereas the Roe 
solver predictions show vertical velocities as high as 8.45. The HLLC/E solver results 
in vertical velocities O(l0~7). The hybrid solver seems to successfully minimize the 
odd-even instability. 

A second test-case is the classical blunt body in hypersonic flow, which triggers 
the carbuncle phenomenon. A Mach 10 flow over a circular rod is simulated. The gas 
is calorically perfect, with 7 = 1.4, and the rod has a circular cross-section. 80x160 
grid cells are used to solve this problem. Figure 3.5.2 shows the temperature isolines 
for the carbuncle problem using the HLLE Riemann solver. The stagnation region is 
correctly captured, and no deformation of the leading shock is observed. The use of 
more accurate Riemann solvers that do not neglect the middle wave leads to improper 
captures of the curved shock, as seen in Fig. 3.17. The Roe solver is the most sensitive 
to this instability, and results in the formation of a very strong shock deformation. 
The whole interaction is changed. The other Riemann solvers are also subject to the 
instability. Kinks are formed along the main shock front which lead to slip lines in the 
post-shock regions. The flow-field is perturbed by the instability. The hybrid solver 
reduces the impact of the instability, an are showing a slight instability as well. It is 
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Figure 3.16:  Isolines of the temperature field for the carbuncle test case using the 
HLLE Riemann solver. 

(a) Roe (b) HLLC (c) TSRS (d) HLLC/E 

Figure 3.17:   Isolines of the temperature field for the carbuncle test case using 
contact-preserving Riemann Solvers and the HLLC/E hybrid Riemann solver. 
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Figure 3.18:   Radii of the blast wave fronts as a function of time for the case of 
planar, cylindrical and spherical Blast waves. 

apparent that the HLLC/E case suppresses almost completely this instability. 
The last test presented here is the point source explosion of Sedov. In this problem, 

the far-field of an explosive charge is considered to reach a self-similar state. Sedov 
[1959] quantified the normalized profiles behind the outgoing blast waves, and showed 
that the radius of the outwards-going follows R(t) oc t2^n+2\ where n = 1 for a 
planar explosion, n = 2 for a cylindrical one, and n = 3 for a circular explosion. The 
following simulations have been performed. The initialization consists in an initial 
radius of 8.5dx, where dx is the spacing of the uniform grid, of high pressure, set to 
19.73. The outer environment is composed of fluid at rest, at a pressure of 10~5. The 
density is set to 1 everywhere. The fluid is made of a calorically perfect gas with 
7 = 1.4. 128x1x1 grid cells were used for the planar case, 128x128x1 grid cells for 
the cylindrical case, and 128x128x128 for the circular case. 

The temporal evolution of the radii of the blast waves was collected for all cases, 
and are presented in Fig. 3.18. Curve-fits to these profiles show that their evolutions 
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follow closely the analytical result of Sedov [1959]. Furthermore, the resolution of a 
cylindrical or spherical phenomenon on a Cartesian grid usually leads to a-symmetric 
solutions, as, from a numerical stand point, the propagation speed in the direction 
aligned with the cells and in the transverse directions is not identical. The extension 
of the one-dimensional hydrodynamic solver to multi-dimensional simulations should 
minimize this type of errors. Figure 3.19 shows the normalized pressure distribution 
versus radius for every point in the domain. The reference data have been obtained 

•    256" 2D grid 
— 4096 ID grid 

I 
(a) 

Figure   3.19:     Sedov's point explosion problem:    pressure profiles of the one- 
dimensional reference and two-dimensional simulations. 

from a high-resolution one-dimensional study. The shock is captured over two to three 
cells. Furthermore, the scattering of the data is smaller than one grid cell of the two- 
dimensional grid, highlighting the very small anisotropy obtained in the resolution 
of this cylindrical problem on a Cartesian grid, hence showing the appropriateness 
of the extension of the upwind scheme to multi-dimensional simulations. Due to the 
coarseness of the two-dimensional grid compared to the one-dimensional reference 
simulation, the field of the coarser simulation is filtered on the grid, and averaged 
over the cell volume, so that the pressure peak is not fully recovered. 

The results of these different verification studies have shown that the shock- 
capturing methodology developed here can efficiently capture discontinuities in super- 
sonic flows, and that its extension to multi-dimensional problems is adequate. Shocks 
and contact are captured at their right propagation speeds. Smearing of the contacts 
has been observed, in good agreement with other state of the art numerical methods 
for supersonic flows. The sensitivity of the scheme to classical instabilities has been 
shown to be considerably reduced by the hybrid Riemann solver. This numerical 
method does not perform very well for very strong rarefactions, but such features are 
not found in the typical applications this method is intended for. 
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3.6    Assessment and verification of the hybrid method- 
ology 

The hybrid numerical methodology described in Sec. 3.2 is designed to detect discon- 
tinuities in the flow through the evaluation of the flow smoothness, Eqn. 3.11. The 
numerical scheme employed to compute the interface flux reverts to a shock capturing 
method if the smoothness exceeds a threshold value, see Eqn. 3.12. The values for the 
noise factors and thresholds have been set from numerical experiments of typical flows 
of interest, and are hereafter described. The smoothness of the pressure field is eval- 
uated in order to distinguish pressure oscillations due to acoustic fields from pressure 
jumps associated with shocks. The density field on the other hand, can be related to 
species gradients, contact discontinuities, flame fronts or shocks. This knowledge of 
typical flow conditions is used to assess the numerical scheme coefficients. 

The proposed approach is validated over a series of tests. The classical Shu- 
Osher testcase considers in a simplified one-dimensional configuration the interaction 
between a shock and a field of turbulence. The capture of this problem requires a good 
capture of the shock wave and a reduced dissipation of the turbulent field. Second, the 
interaction of a vortex tube with a normal shock is examined. The problem involves 
the generation of acoustic pulses (requiring smooth resolution) caused by the shock 
front deformation. 

3.6.1     Assessment of the Hybrid Scheme Parameters 

Gradients in the pressure field can be caused by multiple physical phenomena (coher- 
ent structures formation, reaction, explosion, etc.). Their evolution can be either 
isentropic (rarefaction fan, acoustic wave, compression fan) or anisentropic (shock 
wave). Acoustic waves that involve relatively high pressure gradients steepen into 
propagating shocks due to the non-linearities of the Euler equations. Compression 
fans turn into shock waves due to the self-steepening characteristic of the pressure 
field. As a consequence, even rather small pressure gradients need to be detected by 
the smoothness parameter, tp = 0.05 is found to permit a correct distinction between 
acoustic waves and self-steepening or shock waves. With the shock capturing method 
employed here, the resolution of a shock wave front extends over two to three cells. 
The curvature of the pressure peaks at the head and foot of the shock wave, and the 
smoothness factor has been found relatively insensitive to the value of the thresh- 
old coefficient. For the present study, Sft = 0.5 has been chosen, but no significant 
difference in the flow resolution was observed when using Sfc = 0.2 and 5p = 0.8. 
The numerical experiments used to determine these values were involving idealized 
one-dimensional and fundamental three-dimensional shock / turbulence interactions 
(see section 4.3). 

The smoothness evaluation of the density field is somehow more intricate. Typ- 
ically, strong density discontinuities occur in shock regions (and are then detected 
by the pressure switch described above), and in mixing layers, at the interface be- 
tween two fluids of different density/temperature (tip of an injector, flame fronts, 
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Richtmyer-Meshkov instabilities). A strong density curvature causes numerical os- 
cillations. However, the density field and its variations can play a major role in the 
dynamics of the flow mixing, and need to be resolved without excessive dissipation. 

The experiments used to evaluate the parameters of the smoothness evaluation 
for the density field are based on the simulation of a shock / shear layer interaction 
problem (see section 4.4) and of a Richtmyer-Meshkov instability resolution, here- 
after described. Larger variations of the density field are admissible as they do not 
have a self steepening property, and hence do not contaminate the flow resolution as 
pressure gradients do. The noise parameter tp — 0.1 is found sufficient to capture 
strong gradients without dissipating the smooth variations in density of a compress- 
ible turbulent flow. The presence of strong gradients can, however, have a dramatic 
effect on the flow field, and Stfl = 0.25 is used to ensure a good resolution of the 
density variations. The performance of the hybrid scheme in practical applications is 
hereafter illustrated. 

3.6.2     Simulation of a Richtmyer-Meshkov Instability 

Richtmyer-Meshkov instabilities (RMI) involve the impulsive acceleration of a density 
interface. The initial instability gives rise to a linear growth of the initial perturba- 
tions. This regime is followed by a nonlinear interaction, where the deterministic 
structures emerging from the initial discontinuity break down into smaller scale fluc- 
tuations, eventually leading to a fully turbulent mixing region. This transition to tur- 
bulent states is enhanced if the once-shocked interface is re-shocked (by a secondary 
shock following the primary shock, or, more likely from an experimental standpoint, 
from the primary shock reflection at the back wall of the wind-tunnel). The present 
simulation focuses on the experimental study of re-shocked RMI conducted by Vetter 
and Sturtevant [1995]. An interface air and SFQ at room temperature is located at 
0.62 m from the back end of a wind tunnel, and is shocked by a M = 1.5 shock. Re- 
shocking is obtained from back-wall reflection of the travelling shock. A schematic of 
the configuration is presented in Fig. 3.20. 
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Figure 3.20: Schematic of the Richtmyer-Meshkov Instability problem. 

A physical domain of 0.72 x 0.135m x 0.135m is discretized using 746 x 140 x 140 
grid cells, Periodic conditions are enforced in the transverse directions. In the axial 
direction, the left boundary uses supersonic inflow conditions and the right boundary 
is a no-slip wall. The initial interface perturbation is imposed following the model of 
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Hill et al. [2006]: 

x/(y, z) = aQ |sin(7n//A) sin(7rz/A)| + a^y, z) 

where h(y,z) is a random function which perturbs the initial interface profile to break 
the symmetry and enhance the transition. a0 = 0.25 cm, ai = 0.025 cm and A = 
0.27/14 cm were assumed. 

At the initial stage of the interaction, the shaped interface evolves and leads to the 
formation of finger-like structures of air that penetrate the SF$ region, and the fluids 
start mixing, as presented in Fig. 3.21(b) and 3.21(b). These structures result from 
the hydrodynamic instability of the flow, and a good discontinuity capturing method 
is needed to capture the interface growth with limited dispersion. Figure 3.21(c) 
shows the regions of average switching (l/3(Aj+i/2,j,fe + K,j+i/2,k + \j,fc+i/2)) for this 
initial stage. The normal shock is captured with the shock capturing, as visible on 
the right side of the picture.   Figure 3.21(b) shows the contours of the product of 

(a) Density Field (b) YalrYSFe 

(c)A 

Figure 3.21:   Richtmyer-Meshkov Instability simulation at an early stage of the 
interaction, (a) density field, (b) mass fractions product and (c) switch function. 

mass fractions, Kajr x YSF6, and highlights the regions where mixing is occurring. The 
regions where mixing occurs are resolved using the central scheme, hence achieving a 
proper resolution of the process. The neighboring zone, where the gradients with the 
unmixed fluids are still high are resolved with the shock-capturing scheme. 

After reshock, the transition to turbulence of the mixing region is enhanced. Fig- 
ures 3.22(a) and 3.22(b) show the density field and the Yair x YSF6 field after turbulent 
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(a) Density Field (b) YairYSFa 

(c)A 

Figure 3.22: Richtmyer-Meshkov Instability simulation at a late stage of the inter- 
action, (a) density field, (b) mass fractions product and (c) switch function. 

transition. The presence of density gradients in the mixing region is clearly visible, 
although these features are not as sharp as during the initial stages. Rather, they 
show the boundaries of large scale vortical structures that entrain the fluids into the 
mixing region, and correspond to the interfaces between mixed and fresh fluids. In 
the mixing zone, large scale vortices coexist with smaller scale turbulent eddies, and 
the variations in density are more diffuse. The shock capturing scheme is employed 
in the regions of strong density variations, but overall, the turbulent zone is mostly 
resolved using the central scheme. 

3.6.3     Shu-Osher Interaction 

The Shu-Osher problem (Shu and Osher [1989]) consists in a one-dimensional shock 
front propagating into a sinusoidal density distribution. As the shock passes through, 
it is immediately followed by a region of rapid, high amplitude oscillations. These 
short wavelengths oscillations decay further downstream of the shock, forming a re- 
gion of longer wavelength oscillations which steepen into shocks, forming an N-wave 
pattern. A complete resolution of the entire phenomenon and all wavelengths requires 
a fairly high resolution. Furthermore, an accurate computation of shock propagation, 
at the right speed, and a smooth capture of the short-wavelength variations that form 
in the post-shock region is needed to resolve all the physical features of this flow. This 
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makes this simple test particularly relevant to the problem of shock / turbulence in- 
teraction. 

The initial conditions for this problem are as follows: a shock initially located at 
x = 2 propagates in the x > 2 direction. The density profile is given by: 

p{x) 
3.857142 x < 2 
1 - 0.2 sin(5x)    x > 2 

(3.69) 

while pre-shock pressure and velocity are 1 and 0, respectively. The post-shock values 
for pressure and velocity are constant and equal to 10.333333 and 2.629369, respec- 
tively. The domain extends from x = 0 to x = 10. The left boundary is treated as a 
supersonic inflow, and the right boundary is an outflow. The gas obeys a calorically 
perfect gas equation of state with an adiabatic index 7 of 1.4. The simulation is 
finalized at a time of 1.872. Uniform one-dimensional grids are used for these com- 
putations. The reference converged solution is classically obtained by performing a 
highly resolved simulation of this same configuration (noted Ref in the figures). 

The purely upwind approach cannot capture to short wavelength oscillations when 
200 grid cells are employed (figure 3.23), and in this region, the dominant wavenumber 
of the N-wave pattern appears as the smallest resolved wavenumber.   A simulation 

Figure 3.23:   Density profile at the final time for the Shu-Osher shock / entropy 
Wave interaction. Ref —, Hybrid method (N=200) , pure upwind (N=200) • • •, 
Hybrid method (N=400) o, pure upwind (N=400) o . 

using exclusively the smooth flow solver did not converge for the present resolution. 
The oscillations around the shock front generate unphysical values for the energy. 
The hybrid method leads to a crisp capture of the shock front using the upwind 
scheme, while the smooth flow solver is used to resolve the post-shock region. As a 
consequence, despite the fact that the full amplitude of the oscillations is not totally 
recovered, the short wavelengths are obtained in the post-shock region at this low- 
resolution simulation. 
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As the resolution is increased to 400 grid cells (Fig. 3.23, 3.24), the simulation 
based on a purely upwind approach captures all the wavelengths of the problem, 
but the inherent dissipation of the scheme prevents this approach from capturing the 
oscillations amplitude. A purely central scheme simulation converges at this resolu- 
tion, although, in the course of the simulation, pressure and density fields reach very 
small values. The non-physical oscillations formed around the shock front, modify 
the behavior of the post-shock region, but permit a capture of the oscillations. The 
self-steepening waves, however, are not correctly captured, and lead to the forma- 
tion of numerical oscillations. The hybrid approach combines the advantages of both 
schemes, leading to a proper capture of the main shock, and a very good resolution of 
the post-shock oscillations. Furthermore, the oscillations around the N-wave pattern 
are rather small and do not amplify. 

Figure 3.24:   Density profile at the final time for the Shu-Osher shock / entropy 
Wave interaction using the central, upwind and hybrid schemes. 

The observations made for a resolution of 400 grid cells are still valid for an ex- 
tension to a resolution of 800 grid cells, presented in Fig. 3.25. The hybrid scheme 
captures the physical phenomenon with limited dissipation. The main front is cap- 
tured at the right propagation speed, and the formation of the short wavelength 
oscillations is well simulated with the hybrid approach. Again, the N-wave pattern 
formed by the self-steepening pressure gradients, is initially resolved with the smooth 
flow solver. Small amplitude oscillations are formed around the discontinuities, which 
remain small throughout the simulation. Overall, the hybrid scheme shows good cap- 
ture of this one-dimensional shock / turbulence interaction. 
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Figure 3.25:   Density profile at the final time for the Shu-Osher shock / entropy 
Wave interaction. Ref —, Hybrid method (N=800) o, pure upwind (N=800) o . 

3.6.4    Shock / Vortex Interaction 

The passage of a vortex through a shock wave is a problem of fundamental inter- 
est. It has been extensively studied experimentally (e.g. Dosanjh and Weeks [1965], 
Cattafesta and Settles [1992], Chang et al. [2004]), analytically (Ribner [1954a, 1985], 
Mahesh et al. [1997]) and numerically (Ellzey et al. [1995], Inoue and Hattori [1999], 
Dexun and Yanwen [2001]), with a particular emphasis on the noise production 
through the interaction. The passage of large coherent vortices through compression 
wave contributes significantly to the shock-associated noise that is found in jet engines. 
Experimental observations and numerical simulations have permitted to identify the 
physical mechanisms involved in the sound generation during the interaction. The 
shock deformation and the subsequent localized compressions and expansions lead to 
the formation of a series of acoustic waves which propagate radially from the point of 
interaction. Their strength is a function of the angle. The first wave generated is re- 
ferred to as the precursor directly followed by the second sound wave. The shock wave 
distortion and its relaxation to the undisturbed position often lead to the formation 
of third and more waves. 

The ability of the present numerical approach to capture shock / vortex interaction 
and the sound generation is hereafter tested. The numerical set-up used here is 
similar to that of Inoue and Hattori Inoue and Hattori [1999]. A standing normal 
shock, corresponding to a free-stream Mach number Ms is initialized at a location 
x — 0. The un-shocked fluid at x > 0 has a static pressure and temperature Pu and 
Tu respectively. The right boundary is treated as an inflow with constant properties. 
The shocked flow is on the left side of the interface and has pressure and temperature 
Ps and T„. The left, top and bottom boundaries are subsonic outflows. Noting R the 
radius of maximum velocity in the initial vortex, the domain extends from —20/? to 
8R in the x-direction, and from -12R to 12R in the y-direction. A vortex is initialized 
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x = 2R, y = 0, with a velocity profile prescribed as: 

T 
Vf>{r) = vmax—i *(*-£) 

The pressure within the vortex is obtained from the relation: 

^ = & (3.70) 
dr        r 

Defining the vortex Mach number Mv as the ratio between vmax and the free-stream 
un-shocked speed of sound au, the integration of the previous equation for an isen- 
tropic flow gives: 

P(r) = pJl-^-±My-& 

T(r)=Tu(l-^-±My-£ 

The simulation conducted for the present study is based on the experimental study 
of Dosanjh and Weeks Dosanjh and Weeks [1965]. The mean flow Mach number is 
Ms = 1.29, and the vortex Mach number is Mv = 0.39. Following the study of Inoue 
and Hattori Inoue and Hattori [1999], the Reynolds number based on the un-shocked 
density, velocity and viscosity, and on the vortex radius is set to Re = 800. Figure 
3.26(a) represents the density field at a time T = 10.3R/au. This field shows the 
structure of the waves generated from the interaction in the shocked region. Two 
reflected shocks are formed, that propagate outwards, and the triple points that 
result from the main shock / reflected shocks interaction lead to the formation of 
slip-lines, that connect the vortex to the triple points. The circumferential pressure 
distribution at this time is collected for the precursor (Pp(0) at r/R = 10.3) and for 
the second sound wave {PiiQ) at r/R = 8.3), where 6 is the angle from the horizontal, 
taking the vortex as the origin. Their behavior is typical of the quadrupolar nature 
of the phenomenon. The angular variations of the normalized pressure difference 
(P2 — Pp)/Ps) is then computed and compared to experimental and other numerical 
(Ellzey et al. [1995], Inoue and Hattori [1999]) 

The domain has been discretized using uniform Cartesian grids, and two resolu- 
tions have been studied. A first simulation is conducted with a grid resolution of 
560 x 480 grid cells. The resolution is decreased to 280 x 240 for the second sim- 
ulation. Figure 3.26(b) shows the normalized pressure difference. The behavior of 
the pressure fields reproduces the physical phenomena observed in the experiments. 
Moreover, both simulations are in excellent agreement with the results of previous, 
more refined, numerical simulations. The lower resolution study reproduces the sound 
generation with good accuracy. Small oscillations start appearing at this resolution 
for very negative angles (6 < -120°), but do not contaminate the solution, and the 
physical features remain properly resolved. The shock-capturing scheme is used in 
the main flow direction within the shock thickness which extends over two cells, and 
up to three cells during the interaction. The shock-capturing scheme is also activated 
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(a) Density Field (b) precursor to secondary acoustic wave pres- 
sure difference 

Figure 3.26: (a) Instantaneous density field showing precursor and second sound 
waves and (b) angular variations of the normalized pressure difference between pre- 
cursor and second acoustic waves for the shock / vortex interaction problem - com- 
parison with experiments Dosanjh and Weeks [1965] and other numerical methods 
(Ellzey et al. [1995], Inoue and Hattori [1999]). 

in the transverse direction when the vortex distorts the shock front. The vortex core 
and the acoustic pulses are entirely resolved with the smooth flow solver. 

The present switch formulation is based on the evaluation of the curvature of the 
pressure and density fields, as described earlier. This approach is found to permit a 
good capture of the problems considered in the present study. The set of parameters 
employed in the present formulation cannot, however, be considered universal. Their 
range of applicability is limited to supersonic flows with moderate density gradients. 
Their applicability to hypersonic configurations or flows with very large variations 
in the density field should be assessed. Furthermore, these parameters are flow- 
dependent by definition, and a dynamic evaluation of the parameters as a function of 
the flow field could be considered as an extension to the present hybrid methodology. 

3.7    Other Computational Issues 
3.7.1     Viscous Fluxes 

The overall scheme for the convective and pressure forces resolution is fourth-order 
accurate away from the discontinuities, and switches to the upwind scheme in regions 
of discontinuity. There, the accuracy is flow dependent, and can vary between third 
and first order accuracy, depending on the smoothness of the flow. The evaluation 
of the viscous fluxes, subgrid terms and source terms for the ksg3 evolution requires 
the evaluation of first derivatives.  A standard finite difference methodology is used 
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for those evaluations, with second-order spatial accuracy for first derivatives, and 
overall fourth-order accurate resolution of the second derivative of the diffusion equa- 
tion. Calling (£,77,0 the standard computational directions of increasing i, j and k, 
respectively, the physical derivatives are obtained from: 

du      du di      du dri      du dC 
  —  1 '.   j 2. (3-71) 
dxi      d£ dxi     drj dxt      d( dx, 

where d£/dxi, dij/dxi and d(,/dxi are computed from the grid directly, and are fixed 
in the course of the simulation. du/d£, is obtained from the flow variables as follows: 
derivatives evaluated at the cell centers are computed as: 

( ~df )       = 12 (~Ui+2>i'k + Sui+i<j.k - 8ui-ij,* + Uj_2j,fc) (3.72) 

£—derivatives at an i + 1/2 interface will be obtained from: 

/ Pi      \ 1 

( ~fJc I = To (_u»+2^fc + l5ui+hj,k - 15uijifc + Ui-ij,fc) (3.73) 

The £—derivative evaluated at aj+1/2 interface is based on the extrapolated variables 
(Eqn. 3.17), and reads: 

a£ J =12 (-tt£+w + 8uS+i,* - 8ttS-i,* + <-2,J (3-74) 

An identical formulation is used to compute a £—derivative at a k+l/2 interface. Fur- 
thermore, it is straightforward to extend the formulation given here for £—derivatives 
to the 77— and £— directions. 

3.7.2    Time-Step Determination 

Convection and viscous forces both contribute to the propagation of the information 
from one cell to its neighbors. The maximum characteristic speed for the convection 
is given by |u| + c, the viscous diffusion speed is 2i//Ax, where v is the kinematic 
viscosity, v = u/p, and the thermal diffusion speed is 2K/(PCVAX) = 2/yi//(PrAx). 
The propagation time can be defined for each cell in the domain as: 

Atfo = V_ 2 (3.75) 

where E is the average surface of the cell boundaries, and the viscous diffusion speed 
has been neglected to the thermal diffusion speed (7 > 1, Pr < 1). In order to 
get a time-explicit method, the most restrictive propagation time of all cells, AF, is 
obtained 

A? = min (A**,) (3.76) 
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The actual time-step imposed for the time integration of the governing equation 
is determined from stability considerations as: 

At = NCFL A? (3.77) 

The CFL number, NQFL, is used to ensure the stability of the computation, and is 
scheme-dependent. In the current approach, a CFL number NQFL = 0.25 is imposed. 

3.7.3    Boundary Conditions 

Typically, temporally evolving problems are configurations with at least one, and 
often up to three directions of homogeneity. The use of periodic boundary conditions 
in these directions is a rather standard approach. Other boundary conditions for 
temporal problems include no-slip walls and symmetry boundaries. Spatial problems, 
on the other hand, require the integration of inflow and outflow boundary conditions 
into the problem. In the present study, both temporal and spatial problems are 
considered. Each boundary condition type is independently addressed in the following 
paragraphs. 

• Periodic BC 

Periodic BCs are used for simulating flows that have at least one direction of 
homogeneity In a homogeneous flow, the evolution of a characteristic volume of fluid 
is statistically identical to the evolution of a neighboring volume of fluid. It can then 
be assumed that, for simplicity, the neighboring volume of fluid evolves exactly as the 
considered volume. 

Under this assumption, the periodicity of the solution is used to reproduce the 
interior of the domain at the boundaries, at the end of every integration sub-step 
(predictor and corrector). This operation is not computational, but rather a copy 
handled by communication. 

• Inflows 

In supersonic flows, the flow velocity is greater than the local speed of sound, and 
no characteristic can propagate upstream of the flow. Hence, all the flow properties 
are prescribed for supersonic inflows. 

The superposition of turbulent fields on the average inflow profiles is performed 
assuming that the Taylor hypothesis can be used, that is, that the spatial location of 
a turbulent field obtained from a temporal simulation can be converted into a time- 
varying profile at the inflow of a spatial problem. The instantaneous velocity field 
at the inflow x = 0 of a spatial problem is then the superposition of a mean profile 
Ui(y, z) and of a fluctuating field u't, obtained from a frozen turbulent field following: 

Ui{x = 0, y, z, t) = Ui(y, z) + vftx = -Uct, y, z) (3.78) 

This assumption is valid in the studies presented here, as the turbulent intensities 
encountered are relatively small, and mostly solenoidal (Lee et al. [1992]). 
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This approach cannot be used for simulations involving wall-bounded supersonic 
flows, and alternate inflow approaches need to be used. In the current study, a 
recycling reseating methodology (RRM) is used to generate the turbulent inflow. 
Originally proposed by Lund [1998] for incompressible flows, this method uses the 
similarity in the turbulent structures at different downstream locations of a bound- 
ary layer to construct a self-developing turbulent inflow. While a boundary layer 
cannot be treated as a homogeneous flow in the direction of propagation, the scaling 
laws of the inner and outer layers of the boundary layer are used to rescale these 
turbulent fluctuations. This method has later been extended to compressible flows 
by several researchers. A review of the most commonly used RRM is given in Knight 
[2006]. In the present study, the RRM technique of Stolz and Adams [2003] is chosen 
for its simplicity and good convergence (Knight [2006]). 

Let 7 be the ratio of inflow and recycling friction velocities, 7 = uT,in/uT<rec, it 
is assumed that the friction velocity depends on the boundary layer thickness as 
uT oc 51/8. Given the classical scaling laws of the boundary layer, U/uT is a function 
of y+ = yuTjv in the inner layer, and (f/oo — U)/uT a function of n = y/5 in outer 
layer. Extending this scaling to the fluctuating velocities u'/uT, v'/uT and w'/uT, the 
relation between inflow plane and recycling plane in the inner layer of the boundary 
is given by: 

u'ln(yinUT,in/v) u'rec(yrecUT<Tec/v) 
  =         Where       yinUT,in/v = yrecUT,rec/V (3.79) 

<"Ttin *"T,rec 

so that: 
«i„(j/in) = 7<ec(72/«n) (3.80) 

In the outer layer, the scaling reads: 

KniVinlkn)   _ u'rec(yrec/Srec) 

and: 

where     yin/5in = yrec/<5rec (3.81) 

KniVin) = 7<ec(782/in) (3.82) 

The scaling obtained for the mean value of the axial velocity U is similar. The 
averaged variables are estimated using a Butterworth filter to obtain sliding time 
averaged quantities, similar to Stolz and Adams [2003]. 

These relations hold for the velocity fluctuations and the mean axial velocity. 
The mean transverse velocity, along with the mean and fluctuating thermodynam- 
ics variables are assumed to have universal scaling laws independent of the fric- 
tion velocity, and solely functions of their freestream value (VQQ, TocPoc), of y+ and 
eta. For instance, the temperature field is rescaled using T'/T^ = f(y+) so that 
T;n(ym) = rr'ec(7ym) in the inner layer, and V/T^ = /fa), and rin(yin) = T'TJ^yin) 
in the outer layer. 

The scalings described above are valid in their respective layer, and a blending 
is necessary to transition from one rescaling approach to the next.   The weighting 
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function W{rj) given by: 

Win) = I (l + tanh ((l%*\b) I tanh(«)) (3.83) 

where a = 4 and 6 = 0.2, is used to blend these two scalings, and, noting /3 = 
W(-y8y/5rec), the field at the inflow of the spatial problem is obtained following: 

Uin(y, Z,t)  = /? [7«7-eC(7
8y, 2> 0 + (1 ~ 7)^oo] 

(1-/3)   [7urec(7y, 2, t)] 
vin(y,z,t)=        0        [7urec(7

8y,2,i) + (l-7)y(78y^)] 

(1 - /?)        7Wrec(7I/, 2, *) + (1 ~ iW(lV, *)] 
win(y,z,t)=        0        [ywrec(j

8y, z, t)] .       > 

(1-/?)    [7UW(72/,.M)] l       j 

Tin(y,z,t)=        (3        [Trec(7
8y, 2, i)] 

(1-/?)    [rpec(7y>2>«)] 
Pin{y,Z,t) = £ [^rec(78y,^^)] 

(1-/?)    [prec(7y, 2, i)] 

• Outflows 

Outflow boundary conditions are imposed using a standard extrapolation method 
for supersonic flows. Again, in supersonic flows, the characteristics are all out-going, 
and all the properties in the boundary cells can be imposed from the interior of the 
domain. For subsonic outflows, a characteristics-based formulation is used (Poinsot 
and Lele [1992]). In the cases considered in the present studies, perfectly absorbing 
outflows are used, as the acoustic coupling between the flows and the exits should 
be avoided. The use of a sponge layer before the outflow, similar to the numerical 
method of Mahesh et al. [1997], is used for the fundamental study of shock / isotropic 
turbulence interaction, in order to dampen the large velocity and thermodynamics 
fluctuations created by the interaction. This method consists in modifying the gov- 
erning equations of motion in a small layer at the outflow of the domain, in order to 
add a relaxation to the fluctuating field. The governing equations read then: 

^ =-^ + S - a(Xl) (Q - Qref) (3.85) 

where XY is the mean flow direction, and Qref are the flow properties in the absence 
of turbulent structures. <J{X\ ) is a damping factor, and varies as: 

0 otherwise 

where crej and vrej are reference values of the speed of sound and dynamic viscosities, 
Lx is the domain length, and As, xs and n are parameters of the sponge layer method. 

• Walls 
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No-slip walls are modeled as adiabatic, no-slip, acoustically reflecting boundaries. 
This ensures that the interpolated velocity vector is zero at the boundary, and that 
the gradients in pressure, density and species mass fractions are zero at the boundary. 

Very fine resolutions are needed close to walls to capture the turbulent statistics 
in the turbulent boundary layers and often, when the resolution of the turbulent 
statistics in the boundary layer is found not to be critical to the overall flow evolu- 
tion, slip walls, or symmetry boundaries, are used. These boundaries are adiabatic, 
acoustically reflecting. The conditions of non-penetration and of conservation of the 
tangential momentum are applied to the velocity field. 

3.7.4    Parallelization 

The developments presented here have been integrated in a parallel solver. Parallel 
communication is implemented using a standardized Message-Passing Interface (MPI) 
protocol. The resulting numerical code is portable and has been used on multiple 
platforms with different architectures (Intel PC linux cluster, Cray XT4, IBM SP4 
clusters, ...). The performance of the implementation on parallel clusters depends on 
the domain decomposition, and the amount of switching between numerical schemes 
inside a given domain. The implementation of both the upwind and central schemes 
independently have been found to scale well, almost linearly, for up to 1024 processors, 
on multiple architectures (Masquelet et al. [2008]). 

The stencil of the central scheme considered here extends over two cells on each 
side of the interface. The MUSCL reconstruction of the shock-capturing requires two 
levels of information on each side of the interface as well. The flattening method, 
on the other hand, requires the evaluation of the shock thickness at the cell centers 
within two cells from every interface, and has a stencil of two, yielding a total of four 
levels of communication. Finally, the computation of the filtered rate of strain, needed 
for the dynamic closure model, imposes three levels of communication. Overall, four 
levels of communication are necessary for the current methodology. 
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CHAPTER IV 

SIMULATION OF SHOCK / TURBULENCE 
INTERACTION 

The shock / turbulence interaction problem is of fundamental importance. The pres- 
ence of shock waves in high speed flows cannot be avoided, and a correct treatment 
of their impact on turbulence evolution is critical in the development of this LES 
methodology for compressible flows. Three cases of shock / isotropic turbulence have 
been chosen in the present study, representative of the different regimes of the inter- 
action: as reviewed earlier, the interaction of a field of homogeneous turbulence with 
a normal shock wave leads to different behaviors depending on the incoming Mach 
number. An increase in the turbulent intensity is observed through the interaction, 
that increases as the Mach number is increased, and saturates for a Mach number 
above 3. The amplification of the streamwise velocity fluctuations increases until a 
Mach number M % 2, decreases afterward, and saturates at M = 3. 

An M = 1.29 interaction is studied first, similar to the case '1.29.4' of Mahesh 
et al. [1997]. The other two cases are for Mach numbers of 2 and 3, and are similar 
to the configurations denoted '.£?' and 'C in Lee et al. [1997]. These three cases 
are simulated first in direct simulations. Though an exact match with the reference 
data cannot be expected, due to differences in numerical schemes and actual initial 
conditions, these simulations are used to verify the capability of the present hybrid 
methodology in reproducing the physical features of the interaction with minimal dis- 
sipation, and should reproduce the qualitative and, to a large extent, the quantitative 
characteristics of the interaction. 

Direct simulations are performed in two stages. First, a field of isotropic turbu- 
lence is generated. A field of velocity fluctuations is initialized according to a fixed 
energy spectrum, and a simulation of isotropic turbulence decay is conducted, so that 
the artificial initial field gains physical correlations. This procedure will be described 
first. This turbulent field is used at the inflow of a spatial problem of shock / turbu- 
lence interaction. The domain of computation is attached to the shock front, and a 
statistical study of the interaction is obtained. Comparison of the present simulations 
with other reference DNS data shows the correct capture of the physical phenomena 
associated with this type of interactions at all regimes. These direct simulations are 
used to perform an a-priori study of the LDKM closure model for this interaction, 
followed by an LES of this canonical test case, to assess the performance of the closure 
model in a-posteriori analyses. 
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4.1    Initial Field of Isotropic Turbulence 
The generation of an initial field is performed following the procedure given in Knight 
et al. [1998]. The steps of this initialization are: 

• Generate a random field of velocity fluctuations and compute its Fourier trans- 
form, 

• Subtract the divergent part of the field, 

• Compute the energy spectrum in Fourier space associated with these initial 
random fluctuations, 

• Scale all Fourier coefficients, using the ratio between expected and actual energy 
in the wavenumber mode this coefficient contributes to, 

• Re-construct the velocity field using inverse Fourier transform. 

This procedure initializes a field of isotropic, dilatational-free turbulence accord- 
ing to a given energy density spectrum. It should be noted that the velocity field only 
is initialized with this method. All thermodynamics variables are assumed constant. 
In the context of compressible turbulence studies, more realistic field generation ini- 
tialize the thermodynamics fluctuations associated with the velocity field (see, e.g., 
Ristorcelli and Blaisdell [1997]). In the scope of the present study however, the field 
of turbulence is free of thermodynamics fluctuations, similar to the reference studies 
to which this study compares. 

In the initial spectrum, two parameters can be chosen independently, namely the 
energy density and the rate of dissipation, through the following relations: 

/0°° E(K)CIK = k 
/0°° 2VK

2
E{K)<1K = e 

(4.1) 

The Reynolds number of the initial field is related to these two parameters through 
the relation: 

V  3 sjvt 

Several analytic model spectra exist that mimic some features of real turbulent spec- 
tra. The Pao spectrum is often used for high Reynolds numbers flows. Its formulation 
explicitly includes an inertial range with a —5/3 law, and both the energy containing 
and dissipative ranges. This model spectrum is however a poor representation for 
low Reynolds number flows, and the following von Karman model spectrum is often 
preferred (see, e.g. Lee et al. [1997]): 

_. ,      32   \lk  ( K 
E{K) = —\ — ]   exp 

3    V   7T KQ   \ K0 «0 
(4.3) 
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Figure 4.1: Temporal evolution of the velocity skewness (left) and turbulent Mach 
number (right) in the simulation of isotropic decaying turbulence. 

where Ko is the most energetic wavelength. It is straightforward to show, using the 
second relation in Eqn. 4.1 that this most energetic wavelength is related to the 
Taylor micro-scale through the relation: 

KQX = 2 (4.4) 

Following the work of Mahesh et al. [1997], the initial energy spectrum follows the 
model spectrum given in Eqn. 4.3. The initial turbulent Mach number is Mt = 0.22 
and R\ = 39.5. The most energetic wavelength is given by k0 = 6. The domain of di- 
mensions 67r x 27T x 27T is discretized using 243 x 81 x 81 grid cells with uniform spacing. 
Periodic BCs are applied on all sides of the domain. The simulation is performed us- 
ing the hybrid methodology, but no switching occurs during the computation, entirely 
resolved with the fourth-order central scheme. 

The simulation of turbulent decay is conducted until a R\ = 19.1 is obtained. 
This corresponds to a non-dimensional time of tu'/X = 3.2, where v! = urms/\/3 is 
the amplitude of the initial velocity fluctuations. The skewness Si of the i—component 
of the velocity field is an indicator of the coherence of the turbulence. 

Si = 

dui3 

dXi 

Ox, 

•A ,12 
(4.5) 

As reported in Mahesh et al. [1997], a skewness -0.6 < Si < -0.4 indicates a well- 
developed turbulent field. The temporal evolution of the average velocity skewness 
S and of the turbulent Mach number during the course of the isotropic turbulence 
decay is shown in Fig. 4.1. At the end of this simulation, the turbulent Mach 
number has decayed to Mt = 0.14. The initially constant thermodynamics field 
evolves in the course of the simulation, and small temperature and density fluctuations 
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Figure 4.2: Schematic of the shock / Isotropic turbulence interaction configuration. 

are present in the flow (prmS/p ~ 0.01). This initial field is used at the inflow of 
the shock / turbulence interaction problem of M = 1.29 described hereafter. A 
similar procedure is performed to generate the initial turbulent field for the two other 
interactions. The final fields have a Reynolds number of R\ = 20, and Mt = 0.11. 

4.2    Direct Simulations of Shock / Isotropic Tur- 
bulence Interaction 

The fields of well-developed turbulence are superposed on a mean velocity at the 
inflow of a spatial problem. Figure 4.2 shows a sketch of the shock / isotropic tur- 
bulence interaction studied here. In the first simulation, a M = 1.29 standing shock 
is initialized at x = ir/2 from the Rankine-Hugoniot relations based on the mean 
incoming thermodynamic state. The spatial problem extends over 4ir x 2-zr x 2n, and 
231x81x81 grid cells are used to discretize this configuration. The grid generation 
is performed following the stretching function given by Mahesh et al. [1997] for the 
same problem, so that a refined grid is obtained around the mean location of the 
shock front. The two high Mach number cases are solved with the same resolution, 
231 x 81 x 81 grid cells. The physical domain dimensions are (2n + 1) x 2TT x 2n. The 
grid is clustered close to x = TT, mean location of the shock. 

For all three cases, the coordinate system of reference is attached to the mean shock 
location, and supersonic inflow and characteristic outflows are used. Periodicity is 
imposed in the transverse directions. A sponge layer method is applied before the 
outflow of the domain in order to damp the turbulent oscillations. This method is 
described in section 3.7.3, and the values of the parameters in this method follow the 
study of Mahesh et al. [1997], Aa = 5, n = 3 and (Lx - xs)/Lx = 0.14. 

The coordinate system of reference is attached to the mean shock location. Super- 
sonic inflow and non-reflecting characteristic-based outflow conditions (Poinsot and 
Lele [1992]) are applied. All cases are simulated by solving the non-filtered Navier- 
Stokes equations, since the resolution permits a capture of all the physical scales 
involved in the problem, except within the shock. Using a shock-capturing method- 
ology leads to a shock with a finite thickness. The computation of the viscous terms 
within this thickness being questionable, only the inviscid part of the governing equa- 
tions have been solved within this region, both for the present DNS calculations and 
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for the LES computations presented later in this study. 
Statistics are collected for two flow-through-times, after the first two flow-through- 

times have been discarded to wash out initial transients. The profiles of statistically 
averaged Reynolds stresses in the normal and transverse directions are plotted in Fig. 
4.3(a), 4.3(b) and 4.3(c), and compared to their respective reference DNS simula- 
tions. It should be noted that the profiles for the Reynolds stresses in the transverse 
directions show slight differences between 112 and 113 statistics, similar in amplitude 
to that reported by Lee et al. [1997] for the same cases. Hence, for clarity, the aver- 
ages of those two profiles are plotted each time. The statistics in the shock region are 
strongly perturbed by the shock oscillations, and a high value is obtained for the axial 
Reynolds stress from the temporal averaging operation. These velocity fluctuations 
are not of turbulent nature, and this region should be disregarded for all physical 
interpretations, as also noted by other authors, e.g. Mahesh et al. [1997], Lee et al. 
[1997]. 

It is known from previous studies that the interaction of a shock wave with a 
turbulent field leads to a corrugation of the front which, through its oscillations and 
the formation of localized compressions and expansions, generates acoustic energy 
(Ribner [1954b]). Downstream of the shock, the evanescent acoustic waves transfer 
the acoustic energy into turbulent kinetic energy, hence leading to an overall amplifi- 
cation of the turbulence levels. It is inferred from the capture of the Reynolds stresses 
behavior that this energy transfer is correctly captured by the present DNS study. 

Analysis of the behavior of the hybrid algorithm shows that the upwind scheme is 
used for less than 3% of the normal flux evaluations and less than 2% of the transverse 
flux evaluations. The turbulent features are then mostly resolved using the smooth 
flow solver. The flux difference splitting shows a good capture of the shock front and 
of its corrugation. The acoustic energy generation as well as the transmitted turbulent 
kinetic energy are correctly simulated by the hybrid method. Good agreement with 
the reference DNS data is obtained, with less than 5% differences in the amplitude 
of the Reynolds stresses profiles. 

The relevance of the hybrid methodology is assessed in these direct simulations. 
The inadequacy of upwind methods for turbulent simulations was noted by Lee et al. 
[1997], who reported a significant dissipation of the turbulent field in shock / isotropic 
turbulence interactions, resolved with a 6th—order ENO scheme. This is illustrated 
in the present study of shock / turbulence interaction through the resolution of the 
same problems, using purely upwind schemes. The flux-difference splitting method 
developed in the context of the present hybrid method (noted FDS in the following) 
is employed first. Also, an alternate higher-order upwind method has been used: 
the Piecewise Parabolic Method (PPM, Colella and Woodward [1984]) is a higher- 
order flux difference splitting scheme, commonly used in astrophysical simulations, 
and previously employed for DNS studies (Mirin et al. [1999]). The implementation 
used for the present calculations is identical to that of the FLASH code (Fryxell 
et al. [2000]), except no artificial dissipation was employed for these simulations, in 
order to reduce the numerical dissipation. The contours of Reynolds stresses for the 
three Mach number flows considered here are presented in Fig. 4.4. These profiles 
are compared to the hybrid scheme simulations, since this approach performed well 
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for the resolution of the shock / turbulence interaction problems, and showed a good 
capture of the turbulent statistics. The initial turbulent decay in the pre-shock region 
is correctly captured by the upwind methods, but the statistics in the post-shock re- 
gion do not represent the turbulence evolution correctly. The transfer from acoustic 
to kinetic energies is reproduced for the lowest Mach number, where both upwind 
methods show a reasonable resolution of the turbulent statistics. For higher Mach 
number cases, however, the rates of decay are strongly over-predicted. The amplifi- 
cation of the turbulent levels due to the acoustic energy transfer is better predicted 
using the PPM approach, but the subsequent excessive decays are similar for both 
upwind methods. As a consequence, the physical behavior of the configurations is not 
captured correctly, and the upwind methods are found unadapted to the resolution 
of such problems. The following analysis focuses on the results obtained with the 
hybrid methodology only. 

The flow being homogeneous in the y— and z— directions, a spectral analysis is 
performed in the radial direction. The energy density spectrum of a given variable 

/ at the transverse wavenumber kt = \Jky
2 + k2 is computed as: 

EP{kt) = Y, jMn *.)/*(*»> kz)     for ^Jky
2 + kz

2 = k2 (4.6) 

where f(ky,kz) is the discrete Fourier transform of the variable f, and f*(ky,kz) its 
conjugate. Figure 4.5 represents the energy spectra for the axial (Eu2) and transverse 
(Ev2tW2) velocities, for all three Mach number configurations, at three locations: just 
before the shock {k0x = 8.5 for M = 1.29, k0x = 11.5 for M = 2.0 and M = 3.0), at 
the location of minimum longitudinal Reynolds stress behind the shock (k0x = 10.5 
and k0x = 13), and at the peak of longitudinal Reynolds stress (fax = 13.5 and kox = 
17). It is observed in Fig. 4.5(e) that the compression exerted by the shock reduces the 
fluctuations of axial velocity in the low wavenumbers, but enhances the fluctuations at 
higher wavenumbers. The amplification of the stress further downstream is known to 
be the result of evanescent acoustic waves formed by the shock oscillations. Those act 
mostly on the low wavenumbers. The global budget for the longitudinal fluctuations 
is an increase in the level of turbulence, more pronounced at high wavenumbers. 
The spectra for the transverse velocities, shown in Fig. 4.5(f), are globally amplified 
between k^x = 11.5 and k$x = 13. Further downstream, the transverse fluctuations 
are reduced at low wavenumbers and amplified at higher wavenumbers. Overall, the 
amplification is more pronounced at higher wavenumbers. This is in accordance with 
the findings of previous DNS simulations, where a decrease in most characteristic 
length-scales of turbulence was observed (Lee et al. [1997]). 

The results of these direct numerical simulations are filtered in order to evaluate 
the driving terms in the evolution of the subgrid turbulent kinetic energy in the 
context of shock / turbulence interaction. A coarser grid is generated: 106 x 32 x 32 
grid cells are used to resolve the same computational domains. Following the study of 
Gamier et al. [2001], the grid spacing in the shock normal direction is refined at the 
mean shock front to recover the minimum spacing of the DNS study. Fig. 4.6 shows 
the profile of volume ratios between DNS cells and LES cells for the M = 2.0 and 
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Figure 4.6: Ratios of the grid cell volumes between LES cells and DNS grids for the 
M = 2.0 and M = 3.0 shock / isotropic turbulence cases. 

M = 3.0 cases. The coarsening results in volume ratios greater than 16 everywhere 
but in the shock region, where it is decreased to around 6.5. Fields from the direct 
simulation are filtered onto the LES grid using a top-hat filter. 

A statistical average of the filtered field (taken over 40 instantaneous realizations) 
is obtained and used to study the behavior of the closure model for this configura- 
tion. Also, the dynamic Smagorinsky model (DSM) is analyzed during this a—priori 
study. The DSM closure has been found to perform well in many fundamental stud- 
ies of turbulence. In particular, this closure was found by Gamier et al. [2002] to 
reproduce the physics of the shock / turbulence interaction in LES studies. It is used 
in the present fundamental study for comparison purpose, but it should noted that 
the application of the DSM for practical flows is rather limited, as the formulation 
is ill-posed, and requires an averaging of the closure coefficient, over homogeneous 
directions or in a Lagrangian sense, in order to yield stable resolution. 

As noted by Dubois et al. [2002], a high correlation between exact and modeled 
turbulent features in a priori studies does not necessarily imply superior performance 
by the model in a posteriori studies, but rather shows that the model is able to mimic 
some of the physical features of the turbulent flow. Typical profiles of the correlation 
coefficient for the subgrid stresses using the LDKM and the DSM closure approaches 
are shown in Fig. 4.7 for the different shock / turbulence interaction cases. The DSM 
approach is known to have poor correlations in a — priori studies of turbulence, and 
also observed in Fig. 4.7. The a priori behavior of the LDKM for the subgrid stress 
shows a good correlation with the exact stress. Furthermore, the production of ksgs 

using LDKM has a correlation coefficient above 0.8 almost everywhere. 
The main terms of the exact governing equation for the subgrid turbulent kinetic 

energy are computed from the filtered DNS field, and their profiles are represented 
in Fig. 4.8. The convection of ksgs is balanced everywhere by the production and 
the dissipation, except in the post-shock region close to the shock front. Very close 
to the shock front the pressure dilatation correlation plays a role in re-distributing 
the thermal energy into fluctuating energy. This region is localized, adjacent to the 
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shock average location, and its overall impact is small compared to the diffusion of 
k3gs due to pressure fluctuations, which plays a more important role over a broad 
region. This latter term is often neglected in the modeling of the governing equation 
for the subgrid kinetic energy and is explicitly modeled in the LDKM formulation 
given in Chap. 2. Furthermore, the turbulent Prandtl number, the closure coefficient 
for the diffusion due to subgrid pressure fluctuations, is computed dynamically, as 
shown in Sec. 2. The other terms in the governing equation for ksgs that arise 
from compressibility effects, the pressure-dilatation correlation and the compressible 
turbulence, were found negligibly small for these cases, and are thus neglected in the 
current modeling approach. 

4.3    LES of Shock / Isotropic Turbulence Interac- 
tion 

The three cases of shock / turbulence interaction studied by direct simulations are 
repeated in the context of LES. The resolutions and grids for these studies are identical 
to that used in the a — priori analysis described above. Three different modeling 
approaches have been tested: under — resolved simulations are performed hist, that 
is, simulations without any closure model. Next the LDKM closure model presented 
earlier is employed. Finally, the dynamic Smagorinsky model (DSM) is used. The 
implementation followed the formulation given in Moin et al. [1991]. A dynamic 
evaluation of Prt is used along with that model as well, with an averaging procedure 
over the homogeneous directions of the computation to maintain stability. However, 
the LDKM model does not require any averaging in all the reported results. A filtered 
instantaneous field from the DNS simulation is used to provide the initial condition 
for the LES simulations. Also, the field of isotropic turbulence used at the inflow 
plane is filtered onto a grid of uniform spacings. The problem is simulated for one 
flow through time, and statistics are collected for another two flow through times. 

Figures 4.9(a), 4.9(c) and 4.9(e) represent the Reynolds stresses in the shock- 
normal direction for the three LES, along with the results from the filtered DNS 
data. The under-resolved simulations do not capture the rate of decay of the resolved 
turbulent energy in the pre-shock region, and lead to an over-estimation of the level 
of turbulence in the post-shock region. The closure of the subgrid terms should mimic 
the energy dissipation that occurs in the high wavenumbers of the energy spectrum. 
In the absence of subgrid scale models, the only source of extra dissipation can be 
the numerical dissipation. In these LES computations, about 5% of the axial fluxes 
and 3% of the transverse fluxes are evaluated using the dissipative scheme. Those 
interfaces are localized within the mean shock thickness. Thus, it appears that the 
current solver's numerical dissipation has only a minimal effect on the turbulent decay 
in the pre- and post- shock regions. This is an important requirement for a LES solver 
to demonstrate without any subgrid model. 

The peaks of normal Reynolds stresses are recovered by the under-resolved DNS 
simulations presented for M = 1.29 and M = 2.0, but not for M = 3.0. The location 
for this peak in the highest Mach number case is captured, but the amplitude is 
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under-predicted. This is attributed to the grid coarsening, and the subsequent loss of 
corrugation, already observed by Gamier et al. [2002]. This effect is more pronounced 
at higher Mach numbers, as the induced corrugation is reduced. 

The closure models mimic the influence of the small, unresolved scales onto the re- 
solved field, and this leads to a better capture of the resolved turbulent decay in both 
the pre- and post- shock regions. Figures 4.9(a), 4.9(c) and 4.9(e) show that both clo- 
sure approaches perform well in the pre-shock regions, reproducing the pre-shock tur- 
bulent decay. In the post-shock regions, the peak of axial stresses is under-estimated 
by both methods. The LDKM closure however shows a better recovery of the tur- 
bulent fluctuations in that region, with a reduced dissipation compared to the DSM 
closure. Further downstream, it is noted that, independently of the absolute levels of 
turbulence, both closures give the right rate of decay of turbulence. The transverse 
fluxes are represented in Fig. 4.9(b), 4.9(d) and 4.9(f). Again, the under-resolved 
simulation does not capture the decay of resolved turbulence. The amplitudes in the 
post-shock regions are better simulated by the DSM approach for those quantities. 
However, both the LDKM and the DSM simulations show comparable results for 
the decay rates, which are correctly captured for all three cases. The energy spectra 
are computed from the LES field before the interaction {k^x = 8.5 for M = 1.29, 
k0x = 11.5 for the two other Mach numbers) and at the peak of Reynolds stresses in 
the post-shock region (k0x = 13.5 and k0x = 17). These spectra are shown in Fig. 
4.10, along with the spectra computed from the filtered DNS fields. The physical 
processes are well captured by the LES simulations. The axial velocity fluctuations 
spectral distribution is significantly changed even at the smallest Mach number, and 
the small wavenumbers are reduced whereas the larger wavenumber fluctuations are 
amplified through the interaction. The transverse velocity fluctuations are amplified 
for the higher Mach number cases, and the amplification is uniform over the span of 
wavenumbers. The LES simulations show a slight over-prediction of the transverse 
velocity fluctuations at the small scales. This leads to an overestimation of the level 
of transverse fluctuations in the post-shock region, but does not affect the capture of 
the turbulent decay that follows. 

Within the LDKM formulation, the closure coefficients are computed dynamically 
based on the resolved fields, and vary significantly in both space and time during 
the course of the simulations. The statistical averages profiles of c„ and Prt are 
presented in Fig. 4.11 for the lowest and highest Mach numbers simulated here. The 
closure coefficient for the subgrid stresses varies spatially, and increases as the grid 
is clustered close to the mean shock locations to account for the reduced grid size. 
Consequently, the eddy viscosity decreases continuously as the flow approaches the 
shock. Downstream of the interaction, the subgrid stress coefficients vary spatially 
following the turbulence amplification and reach a constant value further downstream, 
as the turbulence reaches a state of homogeneity dominated by the turbulent decay. 
A slight decrease in the average value for c„ is found as the mean Mach number is 
increased. 

Similar to the behavior of c„, Prt decreases as the grid is refined close to the 
mean shock location, and reaches a stationary state downstream of the interaction. 
The values of this closure coefficients do not change significantly in the lowest Mach 

96 



• filtered DNS - before interaction 
LES/LDKM - before interaction 

» filtered DNS - after interaction 
LES/LDKM - after interaction 

* 

• 

0001 

0.0001 

: 

— filtered DNS 
LES/LDKM 

•— filtered DNS 
-- LES/LDKM 

- before interaction 
before interaction 

- after interaction 
after interaction 

i 

kA„ k/k„ 

(a) Axial velocity spectrum (b) Transverse velocity spectrum 

1                   •    1 

1)0001 

NX V 

Ie43 

•—• filtered DNS - before interaction 
LES/LDKM - before interaction 

•—• filtered DNS - after interaction 
- - LES/LDKM - after interaction 

•%v. . 

: 

II <                           1                            2 4 

,     | 

\\\ : 

v"***. 
(MM 

n 
% 0.0001 

lc-05 

<— filtered DNS 
LES/LDKM 

—• filtered DNS 
-- LES/LDKM 

- before interaction 
before interaction 
after interaction 
after interaction 

i 

k*o 

(c) Axial velocity spectrum (d) Transverse velocity spectrum 

1                    '              1 
• 

0.001 

oooi \j\   - 

U--0.S 

*— filtered DNS 
LES/LDKM 

—• filtered DNS 
— LES/LDKM 

- before interaction 
before interaction 

- after interaction 
after interaction 

Yv 

" i 
: 

-.       ) 0.0001 r 

• filtered DNS - before interaction 
LES/LDKM - before interaction 

' filtered DNS - after interaction 
LES/LDKM - after interaction 

k/k, k*. 

(e) Axial velocity spectrum (f) Transverse velocity spectrum 

Figure 4.10:  Velocity spectra of the filtered DNS field and of the LES field for the 
M = 1.29, M = 2.0 and M = 3.0 shock / isotropic turbulence cases. 
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number case, but a stronger reduction in Prt is obtained for M = 2.0 and M = 3.0. 
Prt is close to 0.7 in all cases before the shock, and decreases to 0.4 in the region of 
homogeneous turbulence for the higher Mach number cases, leading to an enhanced 
diffusion of the energy. This effect is particularly important for the higher Mach 
number cases as the levels of temperature fluctuations are increased through the 
interaction with the stronger shock waves. 

These conditions were found to be satisfied in more than 95% of the computational 
cells away from the shocks. Within the shock region, the fulfillment of these conditions 
dropped to 75%. Even when these realizability conditions were violated, the difference 
between the computed subgrid stress closure coefficient and the highest admissible 
value for c„ remained small. 

This fundamental study of shock / turbulence interaction has showed that the 
numerical scheme developed for the resolution of turbulence in supersonic fields per- 
mits the capture of both turbulent fields and discontinuity within one scheme, with 
minimal dissipation. Furthermore, the LDKM closure model is found to be well 
adapted to the modeling of the turbulent field in such configurations, showing a good 
reproduction of the turbulent statistics evolution across the interaction. 

4.4    LES of Shock / Turbulent Shear Layer Inter- 
action 

The interaction of a shock with a shear layer is a very common flow feature in super- 
sonic flows. Sonic and supersonic jets give rise to a complex cellular structure, where 
shocks and expansions interact with the turbulent outer shear layer. Shock waves are 
inherently present in scramjet intakes and combustors, and interact with the shear 
layers formed from the injection systems. Occurrence of shock waves in supersonic 
combustors induces pressure losses that cannot be avoided. However, the impact of 
shock interactions with mixing regions is of considerable importance and needs to 
be understood.Past studies show that mixing is significantly reduced in free shears 
as the convective Mach number is increased. This consideration led Drummond and 
Mukunda [1989] to study the gain in mixing and combustion efficiency obtained by 
simulating a dual shock interaction with a reacting free shear layer, but observed 
moderate improvements only. This configuration was later considered analytically 
by Buttsworth [1996] who estimated the vorticity gain through the interaction to 
be only about 16%. The original study of Drummond and Mukunda [1989] was a 
two-dimensional simulation, and the shocks impacted the shear layer before it had 
developed a fully unstable and self-similar state. Also, the analytical method treated 
the flow in the laminar limit, so that the turbulence amplification that occurs during 
the interaction was not included. This configuration is revisited in the present three- 
dimensional LES study, with a particular focus on the turbulence evolution during 
and after interaction with the shock waves. 

The geometry and flow conditions for the present configuration are hereafter de- 
scribed and represented in Fig. 4.12. A primary grid of 250 x 80 x 40 cells is used 
to discretize the domain of 17 cm x 10 cm x 3 cm.   The grid is clustered towards 
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(a) Configuration of the base mixing layer (b)  Configuration of the shocked mixing 
layer 

Figure 4.12: Schematic of the base Mixing layer configuration. 

the centerline, to provide a proper resolution of the mixing layer, with a minimum 
spacing in the vertical direction of 0.1 mm, following the spatial resolution reported 
in the numerical simulation of Drummond and Mukunda [1989]. A refined simulation 
is performed to assess the accuracy of the coarser resolution. This secondary grid has 
a resolution of 400 x 140 x 60 cells, reaching a minimum spacing of 0.04 mm at the 
centerline. 

The upper stream (hereafter denoted with a subscript u) is a mixture of N2/H2, 
with 10% hydrogen in mass, a static temperature of 2000/^ and a static pressure of 
1 atm, flowing at Mach 2.0 (that is, a velocity of 2672 m/s with the thermally perfect 
gas EOS employed for this simulation). The lower stream (hereafter denoted with a 
subscript /) is an airflow with static temperature and pressure set to match that of the 
upper stream. The Mach number is also set to 2.0, which corresponds to a velocity of 
1729 m/s. The convective velocity for this flow is about Uc = 2100 m/s. The mean 
velocity profile at the inflow of the domain is given by a hyperbolic tangent: 

- Uu + Ut      Uu u(y) = —o— + — ̂ -*(4 V(y) = W(y) = 0 (4.7) 

where 5° is the initial vorticity thickness for the profile, here set to 5° = 0.4 mm. The 
temperature profile at the inflow is set as a function of the imposed velocity profile 
following the Crocco-Busemann relation (Vreman [1997], Doris et al. [2000]). 

T(V)   =2irp(U(y)2-UuUl + U(y)(Uu + Ul)) 
4-CT        T\   VW     I   TiUu-TM 
-rVu       ll)uu-U, ~*~      Uu-U, 

(4.8) 

The convective Mach number for the flow under consideration is Mc = 0.43, which 
makes it moderately compressible, with turbulent structures that still resemble those 
of the incompressible mixing layer. 
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In order to trigger transition, a velocity perturbation is added to this mean profile 
(Fortune et al. [2004], Fu and Li [2006]). The fluctuating velocity field has an energy 
spectrum that follows eqn 4.3. The most energetic wavelength for this spectrum 
is chosen such that Ko<5° = 2, and the amplitude of the fluctuations is such that 
uTms represents 4% of the convective velocity for the current problem. The forcing 
described above is applied in the region of the mixing layer only, according to: 

U(x = 0,y,z,t) = U(y) + u'{x = -Uct,y,z)exp[-[j,) (4.9) 

The top and bottom boundaries are treated as subsonic outflows for the reference 
un-shocked mixing layer. For the shocked mixing layer, shocks corresponding to a 
10° turning angle are imposed numerically by setting appropriate inflow conditions 
to the upper and lower boundaries. The right boundary is a supersonic outflow, and 
periodicity is imposed in the spanwise direction. After allowing five flow-through- 
times of initial simulation, statistics are collected for another five flow-through-times. 

The incompressible mixing length growth rate is often given by the spatial-growth 
model of Dimotakis Dimotakis [1986]: 

where e is a constant independent of the velocity ratio (r = Uu/Ui) and of the density 
ratio (s = pu/pt), with c$ ~ 0.36 Slessor et al. [2000] (although empirical correlations 
and curve-fits suggest 0.25 < cs < 0.45). This coefficient diminishes as the com- 
pressibility within the mixing layer increases. A mixing layer compressibility is often 
quantified solely based on the convective Mach number (Papamoschou and Roshko 
[1988]), though some modified parameters have been suggested (Ilc in Slessor et al. 
[2000] is a modification to Mc for varying 7 flows). Goebel and Dutton Goebel and 
Dutton [1991] studied a Mc = 0.453 mixing layer, and the growth rate parameter 
was estimated to be c& = 0.21 (Slessor et al. [2000]). In the present simulation, 
where r = 0.647, s = 2.370 and the convective Mach number is Mc = 0.43, the 
mixing growth rate is found to follow 8' = 0.228c^, and the value for the coefficient 
found from the vorticity thickness evolution c^ = 0.206, which closely matches the 
experimental value. 

The turning angle imposed at the top and bottom boundaries induce shocks with 
very similar properties (shock angles, pressure ratios across the shocks, density ratios 
across the shocks, etc.). They intersect on the centerline at an axial location of 
X = 6.2 cm. The velocities in the post-shock region are then found to be essentially 
horizontal, U = 2030 m/s, M = 1.35 in the upper stream, and U — 1310 m/s, 
M = 1.35 in the lower stream. The velocity and density ratios across the mixing 
layer are almost unchanged (r = 0.645, s = 2.40). The post-shock convective Mach 
number is Mc<ps = 0.29. 

In the early stage, the development of the mixing layer differs between coarse and 
fine resolutions simulations, but stabilizes within a few centimeters from the inflow. 
The flow evolution and turbulent statistics obtained from the coarser grid simulations 
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were found to match closely those obtained with the refined grid.  All results given 
hereafter are based on the coarser grid simulation. 

Figure 4.13 shows a top view of the iso-surfaces of the Q—criterion for the base 
mixing layer and its shocked counter-part.   This variable is defined as the second 

mm:m%sm*>j 

Shocks Impact 

125 

Figure 4.13: Iso-surface of the Q-criterion (Q = 10 s) for the base mixing layer 
(top) and the shocked mixing layer (bottom), colored by the local Mach number - 
flow is from left to right. 

invariant of the velocity gradient tensor and is well-suited to vortical fields identifi- 
cation (Dubief and Delcayre [2000]). Those snapshots are taken at the same physical 
time, after 10 flow-trough-times have elapsed. The forcing imposed on the mean pro- 
file at the inflow of the spatial simulation leads to a fast transition to turbulence. 
The spanwise vortices develop early, and the ribs structures connecting the different 
rollers show the three-dimensionality of the configuration. The vortical structures 
that pass through the shocks are being compressed, and the post-shock structures 
resemble more two-dimensional rollers than the un-shocked mixing layer structures. 
Later downstream, those structures re-develop a strong three-dimensionality The 
fast growth of the structures after the interaction affects the mixing layer growth 
rate. The thickness based on the 90%-H2 mass fraction is shown in Fig. 4.14(a) for 
the reference mixing layer along with that of the shocked shear layer. A reduction of 
the thickness is observed as the shocks interact with the mixing region. This evolu- 
tion is due to the spatial compression of the mixing region by the two shocks, and is 
not related a reduction in mixing efficiency. On the contrary, the growth rate of the 
shocked layer is significantly increased right after the interaction. This observation is 
confirmed by the profile of mass entrained by the mixing layer, showed in 4.14(b). In 
this figure, the results of both resolution studies are represented, showing the essen- 
tially grid-independent flow evolution after the interaction. The rate of momentum 
exchange between the two layers is significantly increased due to the shock / shear 
interaction. Within 6 cm from the location of the interaction, the growth rate stead- 
ies out at the level of the undisturbed mixing layer growth for that convective Mach 
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Figure 4.14: Mixing Layers growth rate based on a 90% H2 mass fraction, and mass 
entrainment within the mixing layer thickness. 

number. It should be noted that this growth rate is 6% higher than its unshocked 
counter-part, as the decrease in convective Mach number associated with the shocks 
leads to a reduction in compressibility effects. The forcing imposed on the velocity 
and temperature profiles at the inflow of the simulation enhance the transition to 
a fully turbulent shear layer. Statistically averaged velocity correlation have been 
collected at several downstream locations along the domain. Figures 4.15(a) and 
4.15(d) show the normalized statistics of urms and < u'v' > respectively, showing 
that self-similarity is reached from x = 8 cm on. The normalized profiles of vrms and 
wTrns show some small variations with downstream locations, essentially recovering 
the self-similar state. 

The shocks impact increases the relative levels of turbulence in the shear layer. 
Figure 4.16 shows the profiles of turbulent velocity correlations downstream of the 
interaction. The axial and cross-wise autocorrelations are amplified by the shocks 
close to the point of interaction. Figures 4.16(a) and 4.16(c) show that their relax- 
ation to the undisturbed, self-similar states is achieved over a very short distance, 
less than 3 cm. A more significant increase in the level of turbulence is observed for 
the transverse velocity fluctuations. This gain persists over a larger distance, and 
relaxes to the stable level 7 cm downstream of the point of interaction. The Reynolds 
stress < u'v' > also shows this trend: largely amplified by the waves, it relaxes to its 
undisturbed level within a distance from the interaction that is greater than that for 
urma. The turbulence evolution in the shock / shear interaction is found to be mostly 
affected by two competing phenomena. The initial amplification of the turbulent 
levels is similar to the shock / isotropic turbulence interaction studied earlier. The 
turbulent eddies corrugate the shock fronts, and generate local compressions and/or 
expansions. Furthermore, the large scale coherent structures of the shear layer con- 
tribute to the shock oscillations.  The shock corrugation and its motion lead to the 
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several locations along the reference mixing layer. 
and < u'v' >) at 

formation of local acoustic waves, and evanescent pressure waves transfer the acous- 
tic energy into kinetic energy. The motions of the two shocks, while traversing the 
mixing layer, are to a large extent dictated by the large scales of the flow, and are 
then out of phase. As a consequence, the levels of vrms and < u'v' > are particularly 
increased by the interaction. 

The level of vorticity is increased by the compression of the mixing layer. A lam- 
inar calculation for this case showed a 25% increase in vorticity across the shocks, in 
relatively good agreement with the analytical predictions of Buttsworth Buttsworth 
[1996], where a 16% increase was predicted. The three-dimensional turbulent cal- 
culation shows only a 11% gain in mean vorticity. The presence of turbulence and 
large-scale coherent structures does not modify the overall vorticity budget signifi- 
cantly for the interaction. Despite the gain in vorticity, the fast growth of the mixing 
layer decreases the mean rate of strain across the mixing layer and consequently re- 
duces the mean production of turbulence across the mixing layer.   The high levels 
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of fluctuations are not maintained by the external flow. The normalized turbulent 
statistics, vrms/AU and u'v'/AU2 shown in Fig. 4.16(b) and 4.16(d), relax to the self- 
similar profiles. The reduced convective Mach number leads to higher values of the 
turbulent correlations once stationary state is reached, compared to the un-shocked 
case. The compressibility effects are significantly reduced, and the statistics across 
the layer show a behavior close to incompressible mixing layers. 

Overall, the mixing improvement obtained from the shock / shear interaction is 
localized, but high. Furthermore, the increase in static temperature associated with 
this method can be beneficial to the combustion efficiency as well. Pressure losses 
are however induced by the shocks, and their interaction with the shear layer. The 
stagnation pressure is easily obtained in this thermally perfect gas flow by integration 
of the isentropic condition: 

dP dT     n dS=-R— + cP— = 0 (4.11) 
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between static and stagnation temperatures and pressures. It is found that the inter- 
action between the shocks and the mixing layer has a very little contribution to these 
losses. A 2.5% total pressure loss is induced by the two shocks, in the free-streams, 
as seen in Fig. 4.17. The amplification of the losses through the interaction is very 
small compared to the losses solely due to the shocks alone. 

v- 

. — Reference mixing layer 
- - Shocked mixing layer 

i         .         i 

~^: 

«+05        6.5e+05 7e-t05 7.5e-»05 8c+05 8.5e-t05 
P„(Pa) 

Figure 4.17: Profiles of total pressure before the outflow. 

The statistically averaged model coefficients profiles across the mixing layers for 
the reference and shocked mixing layers are presented in Fig. 4.18 and 4.19 respec- 
tively. They exhibit a self-similar-like behavior. The closure coefficient for the subgrid 
stresses peaks at the mixing layer centerline and decreases towards the edges, con- 
sistent with the peaks of Reynolds stresses at the centerline observed in Fig. 4.15(a) 
and 4.15(d). The coefficient for the subgrid dissipation peaks at the edges of the mix- 
ing layer, where the value of ksgs is smaller. The turbulent Prandtl number profiles 
follow the trends of the subgrid stress closure coefficient, peaking at the centerline, 
and decreasing towards the edges. The turbulent diffusion of energy at the centerline 
is associated with the coherent vortices of the mixing layer, and the subgrid contri- 
bution is found relatively weak, with a higher Prt. Closer to the edges of the layer, 
the subgrid contribution to the energy budget is more important, as the turbulent 
Prandtl number decreases significantly. 

The interaction with the shock wave induces a scattering of the closure coefficients 
at the edges of the mixing layer, where the turbulent motions are lesser. Within the 
layer thickness however, their behavior is not strongly modified, showing essentially 
the same variations and the same amplitude as in the reference mixing layer case. In 
these computations again, the realizability constraints were found satisfied in more 
than 95% of the computational cells away from the shocks. Within the shock region, 
the fulfillment of these conditions dropped to about 80%. 

The present study has showed that the shock / shear layer interaction leads to 
a turbulent amplification in the post-shock region, which can significantly enhance 
the mixing rate and/or the combustion efficiency. The gain in mean vorticity due to 
the interaction is found to follow the analytical prediction (Buttsworth [1996]) to a 
good extent, despite its limitation to laminar flows with mean shear. The coherent 
structures and turbulent fluctuations strongly affect the growth of the layer, but have 
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Figure 4.18: Profiles of the LDKM closure coefficients for the reference mixing layer. 

a limited influence on the average vorticity. The evolution of the turbulent shear layer 
downstream of the interaction is dictated by a relaxation process to the self-similar 
state of the new mixing layer. In particular, the reduction in velocity difference across 
the layer leads to a reduced mean production, and the levels of turbulence decrease 
with downstream location. 
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Figure 4.19: Profiles of the LDKM closure coefficients for the shocked mixing layer. 
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CHAPTER V 

SONIC JET IN SUPERSONIC CROSS-FLOW 

A fast arid efficient mixing of fuel and oxidizer is a requirement in most operational 
non-premixed combustion systems. This is of primary importance, and one of the 
biggest design challenges, especially in supersonic combustion systems, where the 
residence in the combustion chamber is very short. To achieve this goal, a good pene- 
tration of the fuel into the free-stream and high levels of mixing are required. Further- 
more, in order to sustain and stabilize a flame, efficient re-circulation of hot products 
is needed to anchor and to continuously initiate the reaction in the mixed fluids. 
Several injector designs have been studied experimentally that generate high levels 
of mixing, sustain the flame, and minimize pressure losses throughout the process. 
Cavity-based (Gruber et al. [1999]) or strut-based (Waidmann et al. [1995]) injections, 
swept ramp injectors (Gruber et al. [2000]) and wall-normal injection (Ben-Yakar and 
Hanson [1998]) are some of the well studied designs. 

Probably the simplest among all the injection designs, the jet in cross-flow (JICF) 
is an efficient method for supersonic mixing of fuel and oxidizer and for supersonic 
combustion, as it allies all the properties required in an efficient injector. A schematic 
of the JICF shown in Fig. 5.1 highlights some of the features observed during the 
interaction (Gruber et al. [1996], Dickmann and Lu [2006]). A blockage of the free- 
stream flow is induced by the transverse momentum of the jet, and a bow shock 
is formed ahead of it. Under the influence of the shock, the incoming turbulent- 
boundary layer separates, and the thickening of the boundary layer in the near-jet 
region creates a A—shock pattern, and leads to the separation of the incoming layer 
and the formation of a re-circulation region. In reacting flows, these regions can 
trap hot radicals and products, hence anchoring the flame. The under-expanded jet 
expands suddenly as it penetrates into the low pressure cross-stream and a high- 
speed shear layer is formed between the ambient air and the jet. Furthermore, as the 
expansion fan generated at the edges of the injector interacts with the shear layers, 
the boundaries of the jet are deflected inwards, and compression waves from these 
shear layers deflection form the barrel shocks. Finally, a Mach disk normal to the 
jet flow compresses the injected fluid. As the jet penetrates into the free-stream, a 
high pressure region is created by the shock ahead of the jet (on the windward side), 
whereas downstream, a low pressure region exists at the base of the jet as a result of 
the jet expansion. 

Instantaneous flow fields and vortical structures of JICF in lower-speed flows have 
been the topic of many experimental and numerical studies (see, e.g. Andreopoulos 
[1985], Yuan et al. [1999], Lim et al. [2001], New et al. [2003]). Past experimental 
studies of JICF in supersonic crossflows have suggested that some of these vortical 
structures were also observed in supersonic JICF (VanLerberghe et al. [2000], Ben- 
Yakar et al. [2006]). The jet shear layer is at the interface between the high-speed jet 

109 



_^ <L £ <_ /    /    / ^ ^ 

Supersonic 

Cfosst1a<v 

/ 

Figure 5.1: Schematics of the supersonic JICF interaction. 
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and the low-velocity re-circulation on the windward side, and the separated region on 
the leeward side. Kelvin-Helmholtz instabilities (KHI) are generated, due to the high 
levels of shear, evolve into large-scale vortices that propagate along the jet boundaries, 
and contribute to the mixing process. Furthermore, a pair of counter-rotating axial 
vortices is formed in the plume region. These vortical features are regarded as the 
main phenomena for mixing the fluids in JICF. Horseshoe vortices are generated by 
the interaction between the incoming boundary layer and the jet, and remain close to 
the wall of injection. These vortices do not interact with the jet, and do not participate 
in the mixing process. Finally, vertical wake vortices form between the wall boundary 
layer and the jet plume, downstream of the injection. Their contribution to the mixing 
process is uncertain (Gruber et al. [1997]). Although simple from a conceptual point 
of view, it can be inferred from the above observations that this injection methodology 
leads to a rather complex flow pattern. 

The jet shear vortices, the counter-rotating vortex pair and the wake vortices 
have clearly been identified in actual supersonic JICF experiments (VanLerberghe 
et al. [2000], Ben-Yakar et al. [2006]). However, a detailed capture of all the physical 
features of the flow is difficult, due to the intense fluctuations, the high levels of 
unsteadiness, and the flow speed. RANS, LES and hybrid RANS/LES simulations, 
on the other hand, have been used to isolate some of the key average and instantaneous 
features of this interaction (e.g., Tam et al. [1999], Dickmann and Lu [2006], Peterson 
et al. [2006], Sriram and Mathew [2008], Kawai and Lele [2008]). In particular, some 
vortical structures typical of the high-speed interaction have been highlighted in these 
studies. Shock induced separations and horseshoe vortices have been identified. Some 
studies (Peterson et al. [2006], Kawai and Lele [2008]) have shown the particular 
nature of the KHI in supersonic JICF, related to the unsteady deformation of the 
barrel shock in response to the pressure oscillations within the incoming boundary 
layer (Kawai and Lele [2008]). All these phenomena add some complexity to the 
dynamics of the flow. Other vortical structures, such as the hanging vortices (Yuan 
et al. [1999]) or the windward vortex pairs (New et al. [2003]), found in subsonic 
JICF, have not been clearly identified in supersonic flows. 

A LES of supersonic JICF is performed to resolve the time-averaged and unsteady 
features of this interaction. The present study focuses on the JICF configuration 
studied experimentally by Santiago [1995] and Santiago and Dutton [1997]. Detailed 
velocity fields have been obtained using LDV measurements, in the centerplane of 
the streamwise direction, and in two cross planes downstream of the injection. Mean 
velocities in the axial and transverse directions, and statistics of the fluctuating veloc- 
ities are available for comparison. In addition to comparing with these experimental 
data, another focus of the present study is the investigation of the unsteady fea- 
tures of this interaction, and the impact of the free-stream Mach number and jet to 
free-stream momentum ratio on the flow dynamics. 
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5.1    Configuration and Parameters for the JICF 
Study 

The present study focuses on the physics of a sonic jet injected into a supersonic 
crossflow. The configuration reproduces the experimental study presented in Santi- 
ago [1995], Santiago and Dutton [1997] and VanLerberghe et al. [2000], where time- 
averaged and fluctuating velocity profiles from LDV measurements, PLIF imaging 
and analysis of the mixing have been reported. The experimental conditions are as 
follows. Air is injected through a choked nozzle with an exit diameter d = 4 mm 
located at the bottom wall of a wind-tunnel. The free-stream in the wind tunnel is 
a M = 1.6 airflow. Stagnation conditions for the injector and the main stream are 
given in Tab. 5.1. The test section has a width of 76 mm and a height of 36 mm. 

Table 5.1: Experimental parameters for the jet in cross flow experiment of Santiago 
and Dutton [1997]. 

Case A 
free-stream jet 

Mach number 1.6 1.0 
Pstag (kPa) 241 476 

Pstatic (kPa) 57 251 
*nor7n shock  ^Ki a) 160 — 

Tstag (K) 295 295 
Pstatic {kg/m3) 1.05 3.55 
velocity (ms_1) 446 315 

pU2 (kg m~ls~2) 2.03 105 3.52 105 

J = (PU%J(PU2)00 1.7.: ! 

PR = Pt, jet/Poo 8 

Noting (x, y, z) = (0,0,0) the center of the injection port, the computational do- 
main used for the present study extends from x = —16.5d to x = Id in the streamwise 
direction, and from y = 0 to y = 9d in the transverse direction. The spanwise depth of 
the experimental facility has not been fully simulated for computational savings, and 
extends from z = —6.3d to z = 6.3d. This domain extent is sufficient to capture all 
the physical processes, allows comparisons with the experimental data and prevents 
the wave reflections from the side of the domain from interacting with the regions of 
interest. Two grid resolutions have been used to resolve this configuration. A coarse 
grid consists of 300 x 150 x 100 cells with grid stretching to refine the resolution 
close to the injector and close to the lower wall of the wind tunnel. The resulting 
resolution is finest at the tip of the injector, where Ax/d = 0.023, Ay/d = 0.022 and 
Az/d = 0.032. Peterson et al. [2006] found that the inclusion of the injection plenum 
chamber in the domain of the simulation improved the jet flow rate, and therefore, 
this section is simulated and resolved using a 23 x 60 x 23 grid. A finer grid is also 
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used to assess grid independence of the reported simulations. This grid employed 
600 x 225 x 200 cells in the test-section, and 46 x 90 x 46 grid cells in the injection 
chamber. 

The test-section inflow conditions at x = —16.5d are generated using the rescaling - 
recycling method described in Stolz and Adams [2003]. At every instant, the temporal 
fluctuations in velocity, temperature and density are extracted from the recycling 
plane located at x = —bd, rescaled, and reintroduced at the inflow plane, x = —IQ.bd. 
This method permits the self-generation of an inflow boundary layer with turbulent 
structures. The boundary layer displacement thickness at the recycling plane was 
constrained to match that obtained in the experimental study, 5* = 0.59 mm. The 
inflow in the plenum chamber uses a stagnation condition-based characteristic inflow. 
The outflow at x = Id is a standard supersonic extrapolation. The bottom boundary 
of the wind-tunnel, as well as the sides of the plenum chamber are treated as no- 
slip adiabatic walls, whereas symmetry conditions are applied to the top wall of the 
section. Periodicity conditions are used in the spanwise direction. After washing 
out the transients due to the initial conditions, statistics are collected for over 5 
flow-through-times. 

5.2    Comparisons with Experiments 
The mean velocity profiles collected in the centerline plane at four different stations, 
x/d = 2, x/d = 3, x/d = 4 and xjd = 5 are compared to the experimental velocity 
fields in Fig. 5.2 for both grid resolutions. Similarly, profiles of velocity fluctuations 
are compared to the experimental profiles in Fig. 5.3. For both the second and last 
locations, velocity profiles have been acquired from centerplane measurements and 
from cross-plane acquisitions. Consequently, 3 sets of data for the axial velocity and 
2 sets of data for the transverse velocity are available for these locations, and have all 
been used for comparison in the following plots. Some of the experimental uncertainty 
is highlighted in the scatter of the velocity fields obtained for different acquisitions. 
However, to a very good extent, the global behavior and the amplitude of the profiles 
are reproduced from one realization to the next. Note that the turbulent statistics 
in the free-stream do not go to 0 in the experimental data, probably due to some 
perturbations in the free-stream, and/or due to experimental noise. 

The axial velocity predictions from the LES simulations show a fairly good agree- 
ment with the experiments, and the wake of the jet plume is correctly captured. The 
peak of vertical velocity is over-estimated at the first station, but decays quickly with 
downstream location and reaches amplitudes in good agreement with the experimen- 
tal data. The velocity fluctuations are related to the boundary layer turbulence, to the 
wake of the jet and to the shear vortices (examined in more details later). The profiles 
and amplitude of urms match quite well the experimentally measured fluctuations. At 
the last station, a noticeable difference is seen with one set of experimental measure- 
ments. It should be noted, however, that the agreement with the other two sets of 
measurements is satisfactory. The transverse velocity fluctuations are overestimated 
in the near-jet region, but relax to the experimental profiles further downstream. For 
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Figure 5.2: Profiles of mean axial and transverse velocities in the centerplane at 
four locations downstream of the injection. Comparison between numerical and ex- 
perimental results (at x/d = 3 and x/d = 5,3 sets of experimental data for U and 2 
for V, 1 set of data otherwise - Santiago and Dutton [1997]). 
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Figure 5.3: Profiles of fluctuating axial velocity statistics in the centerplane at four 
locations downstream of the injection. Comparison between numerical and experi- 
mental results (at x/d = 3 and x/d — 5, 3 sets of experimental data for urms and 2 
for vTm3, 1 set of data otherwise - Santiago and Dutton [1997]). 
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Figure 5.4: Contours of Reynolds stresses in two cross-planes downstream of the 
injection (x/d = 3.0 and x/d = 5.0). Comparison between experimental (left) and 
numerical (right) results. 

Vrms again, a fair agreement with one set of data is obtained, whereas the agreement 
with the other experimental acquisition is less satisfactory. 

As mentioned above, mean and fluctuating velocity profiles have been collected at 
two cross-sections downstream of the injector, at x/d = 3 and x/d = 5. A comparison 
of the contours obtained from experiments with the numerical result is presented in 
Fig. 5.4. The kidney-shaped vortices observed in the section of the counter rotating 
vortex pair (CVP) are highlighted in these plots The overall shape is correctly cap- 
tured by the numerical simulation. At the first cross-plane, the width of the mixing 
region, estimated using the field of urms, is slightly over-estimated by approximately 
0.2d. The core of the CVP and the amplitude of the fluctuations are, however, in good 
agreement with the experimental field. At x/d = 5, the predictions on the jet plume 
extent and on the amplitude of fluctuations match the experimental observations. 

The present simulation overall compares favorably to the experimental data. The 
statistics in mean and fluctuating velocities in the centerplane and at two different 
cross-sections show similar trends and amplitude, and the structures of the flow are 
recovered. A more systematic look at the time-averaged and instantaneous vortical 
structures developed in this interaction is examined next. The reference case described 
above (Case A) is complemented by two other cases: a sonic jet into an M = 2 
crossflow (Case B) and a case where the jet to freestream momentum ratio, J = 
(pU2)jet/(p(J2)00, is increased to J = 5 for a M = 1.6 crossflow (Case C), compared 
to J = 1.6 for Cases A and B. The stagnation conditions of Cases B and C are also 
given in table 5.1. The geometry is identical to the reference case and the boundary 
conditions are also kept identical for Case B. For Case C, an extrapolation boundary 
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Table 5.2: Numerical parameters for two jets in crossflow simulation: (a) free-stream 
Mach number M = 2 and (b) jet to freestream momentum ratio J = 5. 

Case B Case C 
free-stream jet free-stream jet 

Mach number 2.0 1.0 1.6 1.0 
Pstag  (kPa) 284 476 241 1428 
Pstatic (kPa) 36 251 57 754 

*norm shocky**-*•') 160 — 160 — 

Tsta9  (K) 295 295 295 295 
Pstatic (kg/m3) 0.77 3.55 1.05 10.65 
velocity (ms-1) 514 315 446 315 

pU2 (kg nr1s'2) 
J = (pU%t/(PU2)0O 

2.03 105 3.52 105 2.03 105 10.56 105 

1.7c > 5.20 

PR = Ptjet/ Poo 13 25 

condition is used at the top boundary, in order to prevent the stronger bow shock 
from reflecting and interacting with the jet mixing region. 

The computational results for case A, shown in Figs. 5.2 and 5.3 demonstrate a 
good grid independent behavior and are in good agreement with experimental data. 
Furthermore, spectral analyses of the energy densities at some key locations, shown 
in Fig. 5.5, show an energy decay that scales with the inertial range scaling u>~5/3. 
Similar energy spectra are obtained from the finer resolution simulation, showing the 
appropriateness of the computational grid to the resolution of this turbulent problem. 
Based on this observation, and consistent with the LES philosophy of using as coarse 
a grid as possible to capture the features of interest, the coarser grid results are 
analyzed in more details in the next sections, and the coarser grid is employed for 
cases B and C listed in table 5.1. 

5.3    Time-Averaged Flow Features 
Some of the well documented time-averaged structures of JICF have been reviewed 
earlier, and are revisited here in the context of the present simulations. Figure 5.6 
shows the pressure contours and some streamlines of the incoming flow for the three 
cases considered here. The mean flow blockage due to the jet leads to the formation of 
a primary strong shock wave ahead of the jet and induces a separation of the boundary 
layer. The weak shock generated by the subsequent thickening of the layer causes the 
formation of a A—shock structure, as visible in Fig. 5.6. A primary recirculation 
region is formed ahead of the jet, centered at around x/d = —1.31, y/d = 0.13 for the 
reference case, in good agreement with the experimental observations x/d = —1.25 
and y/d = 0.13. This region has a triangular shape, and interacts with the jet shear 
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Figure 5.5: Energy spectra at three locations of the centerplane: (a) along the 
developing jet shear layer (x/d = —0.83, y/d = 0.4), (b) in the wake of the jet 
(x/d — 2.35, y/d = 2.6) and (c) further downstream in the jet wake (x/d = 4, 
y/d =2.7). 

layer from (x/d = -0.5, y/d — 0) to (x/d = —0.67, y/d = 0.59). A smaller anti- 
clockwise rotating recirculation is formed between the primary recirculation and the 
jet boundaries. As seen in Fig. 5.6(b), the bow shock in front of the jet is weaker than 
in the other two cases, and the boundary layer separation is weaker. As a consequence, 
the primary re-circulation is smaller, and its center is located at x/d = —1.35 and 
y/d = 0.09. Due to a higher momentum, the jet in case C penetrates further into 
the crossflow, and the bow shock is much stronger than in the two other cases. The 
boundary layer separation is moved upstream, and the recirculation region is located 
at x/d = -1.9, y/d = 0.25. 

The expansion of the jet increases the Mach number of the injected gas, and a 
maximum velocity of 690 m/s is reached at a location x/d = 1.2, y/d =1.3 for 
the reference case. Santiago and Dutton [1997] report a maximum velocity location 
of x/d = 1.25, y/d = 1.38, but estimated the maximum velocity to be 589 m/s. 
The penetration of the jet depends strongly on the momentum ratio, but also on the 
effective back pressure (Everett et al. [1998]). Despite an identical post normal-shock 
pressure of 160 kPa in the freestream for all three cases, the pressure increase through 
the A—shock depends on both the strength of the separation and the jet pressure. 
As reported earlier, the bow shock for case B is weaker than in the other cases, and 
the effective back pressure is lower, leading to a greater penetration of the jet into 
the crossflow, leading to a greater penetration of the jet into the crossflow, and the 
maximum velocity is reached at x/d = 1.52, y/d = 1.48. The jet in case C penetrates 
further into the mean flow, and creates a stronger bow shock, leading to a higher 
effective back pressure and a higher pressure drag. The highest velocity for Case C 
occurs at x/d = 1.88, y/d = 2.52. 
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(a) M = 1.6, J = 1.7 

(b) M = 2, J= 1.7 

(c) M= 1.6, J = 5 

Figure 5.6:   Pressure field, temperature gradient contours and streamlines in the 
centerplane for the three JICF cases. The flow is from left to right. 
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Figure 5.7:   Vortical structures in the JICF configuration represented by the iso- 
contours of Q variable (Dubief and Delcayre [2000]). Flow is from left to right 

For all cases, most of the injected fluid is found to pass through the windward and 
lateral barrel shocks, and across the Mach disk. A small amount only of jet fluid passes 
through the leeward barrel shock and remains over-expanded. As a consequence, two 
shocks are formed: a strong shock at the tip of the Mach disk compresses the jet fluid 
that passes through the leeward barrel shock and penetrates into the free-stream 
(most visible for case C pressure contours in Fig. 5.6). A weaker shock is generated 
from the re-attachment point at the wall, which propagates into the freestream. 

The key observable three-dimensional structures in the JICF are illustrated in Fig. 
5.7 for the reference case. Similar time-averaged features are observed for the other 
cases, and are not repeated here, for brevity. The second invariant of the velocity 
gradient tensor, often denoted Q, is well-suited to vortical fields identification (Dubief 
and Delcayre [2000]). An iso-surface of negative Q is shown first in Fig. 5.7(a), 
highlighting the shear-dominated regions of the average flow, and identifying the 
regions of high velocity gradients. The complex shock pattern in the centerplane 
discussed earlier leads to the formation of three-dimensional re-attachment shocks. 
These structures propagate outwards, interacting with the jet wake and the boundary 
layer. 

An iso-surface of positive Q, highlighting the regions dominated by vorticity over 
strain (Q criterion), is shown in Fig. 5.7(b). The impact of the bow shock onto the 
boundary layer induces separation, and the vortical recirculation region follows the 
curved shock. Along the side of the jet, hanging vortices are formed by the skewed 
mixing layer between the streamwise flow and the vertical jet (Yuan et al. [1999]). The 
origin of the hanging vortices lies between the bottom wall and the boundaries of the 
laterally expanding jet, as shown in Fig. 5.8(a). The center of these vortices moves up 
with downstream location along the jet boundaries, as shown in the evolution from 
Fig. 5.8(a)-5.8(c). Although presented here for a statistically averaged field, it should 
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be noted that these structures are observed to remain quasi-steady in the course of 
the simulations. Further downstream, a counter-rotating vortex pair is formed in the 
wake of the jet. In the present context of supersonic flows, the formation of this 
vortex pair is found to be the result of several simultaneous phenomena. The jet 
column is deformed by momentum, pressure of the crossflow at the windward side, 
and is sheared along the lateral edges, giving a kidney-shape to the initially circular 
jet cross-section, as visible in Fig. 5.9. After being deflected by the jet, the main 
stream expands along the sides of the jets and swerves back towards the center plane of 
the wind tunnel. Actually, the circulation induced by the hanging vortices enhances 
this flow convergence towards the centerplane, as seen in Fig. 5.8(b)-5.8(c). As the 
flow converges, a higher pressure region is formed and the pressure increase leads to 
the formation of two outwards moving shocks, and of a strong upwash velocity which 
penetrates into the jet plume, and creates the circulation of the counter-rotating 
vortex pair (Chenault et al. [1999]). This phenomenon is illustrated in Fig. 5.8(d) 
and 5.8(e). On each side of the centerplane, hanging vortices and vortices of the CVP 
rotate in the same sense, and the hanging vortices quickly weaken. The CVP, on the 
other hand, is amplified in the plume of the jet, enhancing the mixing of free-stream 
and injected fluid. 

Iso-surfaces of the Q variable are shown in Fig. 5.10 for all three JICF cases and 
case B and C show features similar to that of case A described above. Again, the 
hanging vortices formed on the side of the jets are clearly visible in the three results. 
For Case A, the centres of the hanging vortices form an angle of 18° with respect 
to the bottom wall. In the second case, the free-stream flow loses less momentum 
through the bow shock in front of the jet, and the skewed mixing layer is more inclined 
towards the streamwise direction. The angle formed between the centre of the hanging 
vortices and the bottom wall is decreased down to 14°. The opposite occurs in Case 
C, where the very high momentum of the jet creates a hanging vortex with a higher 
angle to the bottom wall, reaching 24°. 

Another type of vortical structures is observed in these iso surfaces, present in all 
three cases but particularly visible for case C. A pair of vortices generated on the 
windward side of the jet, close, to the point where the upper tip of the recirculation 
region ahead of the jet interacts with the shear layer, evolves along the side of the jet, 
above the hanging vortices, as visible in Fig. 5.10. These vortices closely resemble 
the Windward Vortex Pairs (WVPs) reported by New et al. [2003] in the studies 
of low-speed elliptical JICF. The under-expanded jet expands at the nozzle, and 
blocks a large portion of the incoming boundary layer. As a direct consequence, 
the recirculation zone formed ahead of the jet is large, and the pressure increase, 
significant. The windward side of the jet, initially circular, is deformed, leading 
to a concave warping of the jet boundary, and of the subsequent vortex sheet. The 
momentum impact of the recirculation region decreases at the spanwise location where 
the boundary layer flow gets around the jet core. 

A bifurcation of the incoming streamlines occurs at x/d = —0.6, y/d = 1.2 and 
z/d = ±0.75, characterizing the separation between streamlines that get into the 
recirculation region ahead of the jet and streamlines that wrap around the jet. These 
locations, shown in Fig.   5.11, correspond to the location where windward vortices 
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(a) x/d = 0.5 (b) x/d= 1.5 

(c) x/d = 2 (d) x/d = 2.5 

(e) x/d = 3 

Figure 5.8: Average velocity vectors at five cross sections downstream of the injector 
for the reference JICF (background is the pressure field). 
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(a) y/d m 0.5 (b) y/d = 1 

Figure 5.9:   Contours of the average injected mass flux for two vertical planes for 
the reference JICF. 

(a) Case A (b) Case B 

(c) Case C 

Figure 5.10:   Iso-surface of Q = 108s~2 highlighting the hanging vortices for the 
three JICF cases. 
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Figure 5.11:  Iso-surface of Q = 108s 2 and streamlines from the upper boundary 
layer. 

are formed. As these structures are convected downstream, they interact with the 
CVP and weaken. These vortices breakdown quickly for cases A and B. They evolve 
further away from the CVP for case C, hence survive longer. 

The convergence of the freestream towards the centerplane downstream of the 
jet creates a circulation in the near wake region, and two steady wake vortices are 
generated. Also, horseshoe vortices are formed downstream of the injector, close to 
the wall in the wake of the jet. These vortices, also visible in Fig. 5.8(d) and 5.8(e) 
along the bottom wall, rotate in a direction opposite to the CVP above them. Again, 
in the cases of supersonic JICF presented here, and unlike the subsonic JICF, the 
formation of the horseshoe vortices is closely related to the outwards motion of the 
shock pair created in the centerplane and discussed earlier. 

As expected, the averaged fields show a rather complex flow evolution in this JICF 
problem: many sources of vorticity have been identified, and could play a role in the 
overall mixing between jet and freestream. In order to gain understanding in the 
dynamics of this interaction, these steady features are revisited using the unsteady 
data from the simulations in the next section. 

5.4    Unsteady Features and Flow Dynamics 
Images of the injection region have been acquired using PLIF by VanLerberghe et al. 
[2000] in the same experimental facility, and under similar experimental conditions 
as the study of Santiago and Dutton. Large scale unsteady vortices generated on 
the windward side of the jet and convecting along the jet boundary and along the 
jet plume have been identified in this study. Some of the snapshots acquired in this 
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(a) (b) 

(d) 

Figure 5.12: Large scale structures for the reference JICF, case A: (a) and (c) 
experimental observation by acetone PLIF of VanLerberghe et al. [2000], (b) and (d) 
numerical snapshots of the passive scalar field and density gradient contours. 

experimental study are reproduced in Fig 5.12 along with some instantaneous contours 
obtained from the present simulation (case A). In these figures, the boundaries of the 
under-expanded jet are delimited by the contours of temperature gradients. Similar 
large scale structures are known to exist even in low-speed JICF due to Kelvin- 
Helmholtz instabilities (KHI) (Fric and Roshko [2004]) of the vortex sheet created at 
the jet nozzle. These KHI occur along the windward and the lateral sides of the jet, 
forming a circumferential vortical structure rather than a vortex ring, as originally 
thought (Lim et al. [2001]). 

In high speed JICF, the large scale vortices are also observed in the centerplane, 
but their generation is more complex than in the low-speed case. Figure 5.13 repre- 
sents a time-series of the temperature gradient magnitude in the centerplane of the ref- 
erence case, showing the highly unsteady nature of the interaction. The phenomenon 
is enhanced in the present supersonic interaction by the unsteady deformation of the 
barrel shock illustrated in the time-series. The vortical structures and pressure fluc- 
tuations of the incoming boundary layer interact with the jet at the nozzle exit. The 
intensity of the pressure fluctuations inside the recirculation region reaches 13 kPa 
and unsteady compressions are generated within the jet flow. The formation of a 
compression is illustrated in Fig. 5.13 over a time interval of 8 fis. The wave steepens 
into a localized shock wave as it penetrates into the jet and propagates along jet 
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Figure 5.13: Contours of the temperature gradients magnitude (a-c) and of the 
Mach number field with density gradient contours (d-f) at three consecutive instants, 
(g) time-averaged Mach number field. 
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Figure 5.14:   Contours of the temperature gradients magnitude in the x/d = 0 
cross-plane at t = 8fis of the reference JICF. 

boundary. The moving shock finally reconnects the barrel shock further downstream 
of the injection and creates a kink in the jet boundary at the reattachment point , at 
x/d = 0.75, y/d = 1.55 (seen at t = 16 /is, Fig. 5.13(c)). A pocket of unshocked jet 
fluid is then detached from the jet. 

Figures 5.13(d)-5.13(f) show close-up views of the jet windward jet boundary 
representing the Mach number field at the same three instants. The pockets of jet 
fluid formed by the unsteady shock motion within the jet leads to the ejection of high 
Mach number fluid that interacts with the recirculation region. The highly unsteady 
nature of the windward barrel shock impacts the time-averaged Mach number field 
(Fig. 5.13(g)), which shows a very diffuse windward-side barrel shock. 

The pockets of jet fluid ejected through this process are submitted to high levels 
of shearing, and the vortical structures formed by KHI show intense levels of vorticity. 
Due to the higher vertical velocity of the jet fluid, the vortices formed through the in- 
teraction, and visible in Figs 5.13(a)-5.13(c), rotate counter-clockwise, are convected 
along the jet boundaries and break-down into smaller scale turbulence further down- 
stream at the boundaries of the jet plume. Distortion of the windward barrel shock 
at the centerplane is also reported in the PLIF visualizations of VanLerberghe et al. 
[2000] (reproduced here in Fig. 5.12) where kinks in the upstream jet boundary are 
observed. Also, the unsteady formation of shock waves within the under-expanded 
jet, in the centerplane, was also observed and reported in other numerical study (Pe- 
terson et al. [2006], Kawai and Lele [2008]). This perturbation of the jet is found to 
be strongly three-dimensional. The unsteady compression is formed at the windward 
side, where the pressure fluctuations in the region ahead of the jet are the strongest, 
and extend along the jet boundary and to the lateral sides. 

In Fig. 5.14, contours of temperature gradient in the cross-plane x/d = 0 are 
represented at the same instant as for Fig. 5.13(b), showing that the compression 
wave that propagates within the jet is actually curved. The pocket of unshocked 
fluid ejected through this process wraps around the jet, leading to the formation 
of a circumferential vortex due to KHI. The formation of unsteady compressions 
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along the lateral sides of the jet is also observed during the unsteady evolution of 
the jet. The shocks that result from this interaction are found to be weaker than 
those due to windward compressions, and do not penetrate the jet significantly. As a 
consequence, these perturbations do not wrap around the jet, and KHI vortices are 
formed asymmetrically on the sides. 

The deformations of the jet boundary due to the unsteady dynamic pressure of 
the incoming boundary layer is also observed for cases B and C. Despite an identical 
jet to freestream momentum ratio, the transverse jet in case B expands more at the 
nozzle exit, as reported earlier. The Jet Mach number along the boundaries is higher 
than in the reference case, and the penetration of the compression waves, lower. As a 
consequence, smaller pockets of fluid are ejected in case B. For the same reasons, the 
higher jet momentum of case C is less sensitive to the incoming perturbations in the 
boundary layer, and the penetration of the compression waves into the jet is smaller. 

The jet distortion described above and the vortices formation generate strong 
acoustic waves that propagate upstream into the subsonic region and interact with 
the bow shock. The shock front appears wavy and unsteady, as observed in the 
temperature gradient snapshots, and in experimental Schlieren images (Gruber et al. 
[1995], Ben-Yakar et al. [2006]). The shock motion results in an unsteadiness of the 
boundary layer separation, and a deformation of the A—shock structure ahead of the 
jet is observed in the present simulations. Pressure fluctuations are responsible for the 
jet boundary deformation, and this phenomenon could lead, through a self-exciting 
mechanism, to the periodic formation of shear layer vortices. Actually, in a recent 
study, Won et al. [2008] performed a Detached Eddy Simulation (DES) of a JICF and 
showed the very periodic formation of vortical structures from the jet front, probably 
a consequence of such a self-excitation mechanism. In the present calculations, no 
fundamental mode of excitation is found from the pressure and vorticity spectra 
computed ahead of the jet. It is likely that this difference in behavior comes from 
the levels of turbulence in the incoming boundary layer : very small amounts of 
turbulence in the incoming boundary layer was reported by Won et al. [2008] in their 
DES simulation, whereas the present calculations carry turbulent, and non periodic, 
structures in the incoming layer. 

The vortices due to fluid ejection and/or by KHI are formed along the jet bound- 
ary. The three-dimensional evolution of these structures is highlighted through the 
iso-surface of the passive scalar (injected from the jet), as shown in Fig. 5.15 for the 
three cases. Figs. 5.15(a), 5.15(c) and 5.15(e) show large circumferential vortices that 
wrap around the jet and create a large roll up. These structures form symmetrically 
in a vertical plane. The windward part of the roll-up is convected upwards along 
the boundary of the jet, whereas the side vortices are carried along the jet plume. 
The initially planar structures tilt and fold around the jet. These structures engulf 
large amounts of freestream fluid, and a mixing of jet and free-stream fluids at the 
large scales is achieved at the periphery of the jet. Further downstream, these vor- 
tical structures break down into small scale turbulence, hence enhancing the mixing 
process. 

The formation of vortices on the lateral sides of the jet is also observed, as il- 
lustrated in Figs.   5.15(b) and 5.15(d) for cases A and B, respectively.   The higher 
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Figure 5.15: Iso-surface of the passive scalar injected from the jet (Y2 = 0.3) colored 
by the vorticity magnitude, highlighting the formation of vortical structures due to 
localized and/or circumferential Kelvin-Helmholtz instabilities: (a) and (b) case A, 
(c) and (d) case B, (e) and (f) case C. 
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Figure 5.16: Visualization of an instantaneous windward vortex. Iso-contour of the 
passive scalar, and superposition with an iso-surface of positive Q. 

velocity of the jet leads to the formation of a roller with positive x-vorticity, and again, 
carries some of the freestream fluid towards the centerplane in the wake of the jet. 
These instabilities remain on the sides of the jet, and do not evolve circumferentially 
around it. Their generation is related to the lateral jet compression and to KHI along 
the skewed mixing layer. The impact of the quasi-steady hanging vortices in these 
regions is however difficult to assess. Such vortices are found in case C as well, but 
are less frequent and intense than in the other two cases. Windward vortices, on the 
other hand, can be clearly identified on the instantaneous flow structure of case C. 

Figure 5.15(f) shows a vortical structure formed at the tip of the recirculation, at 
x/d = —0.7, y/d = 1.25 and z/d = 0.75. This feature extends along the jet boundary 
and is deflected towards the streamwise direction, tilting to a vortical structure with 
positive x-vorticity. Furthermore, the instabilities of the vortex sheet are observed 
along the path of this structure, as illustrated in Fig. 5.16. The wavy structure of the 
WVP is clearly visible in the iso-surface of passive scalar. The superposition of an 
iso-surface of Q shows that small vortex tubes wrap around the WVP, due to vortex 
sheet instability. Again, these WVP are found for all three cases, but have significant 
amplitude for case C only. 

On the leeward side of the jet, the dynamics of the flow is much less coherent. 
Pressure fluctuations of the order of 4 kPa also induce barrel shock fluctuations, but 
the strong deformations that lead to the ejection of fluid pockets on the windward 
side are not observed here. Rather, small amplitude KHI vortices breakdown as they 
pass through the shock that is connected to the Mach disk. These structures induce 
high levels of velocity fluctuations in the jet plume, and do not influence the jet wake 
significantly. 

A significant part of the injected fluid passes through the Mach disk of the under- 
expanded jet. This injected fluid does not carry a significant amount of turbulence. 
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However, the jet boundary unsteadiness provoke an oscillatory motion of the Mach 
disk, and velocity fluctuations are generated. Furthermore, the Mach disk induces 
a significant flow deceleration, as already observed in Fig. 5.2. The large coherent 
structures that develop along the jet boundary (circumferential, lateral and leeward 
KHI vortices, windward vortices) are strongly sheared as they propagate along the jet 
plume, and breakdown to smaller scale turbulence. Further downstream of the jet, 
mostly two types of coherent structures remain. The CVP creates a large scale circu- 
lation which mixes the freestream fluid with the injected fluid. Then, the turbulence 
in the wake region permits a good mixing at the molecular level. Also, intermittent 
wake vortices are formed and connect the CVP to the bottom wall boundary layer. 
A series of wake vortices is visible in fig. 5.16(b) for case C. These structures are 
formed on the lateral sides of the jet, and were found not to participate in the mixing 
process of this interaction, as they do not carry any of the jet fluid. 

5.5    Computational Performance and Model Anal- 
ysis 

The simulations of JICF presented here have required about 10, 000 single CPU hours 
of computation to wash out all the transients of the initialization, and the statistics 
have been collected over five flow through times, which have required around 15, 000 
hours for each coarse case. The finer resolution of the JICF case A required over 
80,000 single CPU hours before to reach statistically stationary state, and to collect 
statistics. 8% of the streamwise fluxes and 5% of the spanwise and crosswise fluxes 
have required the use of upwinding. The switching of the hybrid method being local- 
ized, the upwind fluxes were evaluated when necessary only, and the computational 
overhead due to the hybrid scheme is rather limited. 

The closure coefficients have been computed dynamically using the LDKM closure 
model described in section 2.3.2. These coefficients vary significantly in both space 
and time during the course of the simulations. This is illustrated in Fig. 5.17, where 
instantaneous and time-averaged fields of the subgrid turbulent kinetic energy and of 
the closure coefficients are presented. 

On the instantaneous fields, it is clear that the jet shear layer is a region of 
intense turbulent activity. The model coefficients reach rather high values on both 
the windward and leeward sides, and peak significantly close to the Mach disk, due to 
the high levels of fluctuations of the jet boundary. The coefficients correlate with the 
coherent structures elsewhere in the flow. More particularly, c„ reaches relatively high 
values in the plume and wake of the jet. The dissipation of kS9S remains relatively 
small in these regions, and peaks very locally. The variations of cv/Prt show how the 
turbulent diffusion of total and turbulent energy is increased in the regions of shock 
waves, and along the jet shear layer, where high gradients of temperature are present. 

Despite these high levels of unsteadiness, the dynamically computed model coef- 
ficients reach a statistically stationary behavior. As observed in the instantaneous 
fields, the levels of turbulence are quite high in the jet shear, and the closure coef- 
ficient for the subgrid stress and the dissipation of ksgs reach relatively high values, 
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Figure 5.17:   Closure coefficient contours for case A of the JICF - Instantaneous 
and time-averaged fields. 
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cu approaching 0.15, and ct reaching its peak value above the Mach disk. The field 
of cvjPrt shows that the diffusion of energy is also important in the jet shear region. 
The average turbulent Prandtl number in this region varies between 0.45 and 0.7. In 
the separated boundary layer, a diminution of the dissipation coefficient is obtained. 
This region is a recirculation, where turbulent structures of the incoming boundary 
layer are being sheared by the upper boundary layer and the jet shear. Furthermore, 
diffusion of k"9" due to pressure fluctuations is induced by the shock / boundary layer 
interaction. Overall, there is an accumulation of subgrid kinetic energy in this region 
which plays a fundamental role in the dynamics of the interaction. 

In the present calculations, the closure for the pressure dilatation correlation was 
found to remain very small throughout the calculation, representing less than 1% of 
the dissipation everywhere except within the shock thickness. There the dilatational 
field is associated with the shock wave, and is not related to the compressible turbulent 
field. This term, like all viscous and k3gs terms, is not explicitly computed within the 
shock thickness. 

The impact of the closure on the flow evolution is assessed by repeating the sim- 
ulation of Case A, performed as an under-resolved DNS (no-model simulation), and 
using the LDKM closure model without compressibility corrections (Following previ- 
ous studies, the turbulent Prandtl is set to Prt = 0.9, and this closure is hereafter 
noted LDKMNCc)i and comparing these results to the simulation presented earlier 
(the closure model with compressibility corrections will be simply noted LDKM). The 
profiles of mean and fluctuating velocities for all cases are shown in Fig. 5.18 and 5.19, 
respectively. The predictions of the mean flow velocity profiles are not significantly 
affected by the closure model. All three simulations show similar captures of the 
velocity defect in the jet plume and in the wake. The differences are, however, clearly 
visible in the profiles of fluctuating velocities. The fluctuations in axial velocity at 
the first station are under-estimated by the no-model and LDKM^cc simulations, 
whereas the present LDKM approach correctly captures the peak in urma that occurs 
in the jet plume. Further downstream, the under-resolved simulation over-estimates 
the levels of fluctuations, and does not capture the turbulence evolution in the jet 
plume. The other numerical simulations recover the amplitude of the velocity fluctu- 
ations and compare well. It should be noted, however, that the turbulent statistics 
within the boundary layer are not captured by either model, but that the simulation 
using LDKM shows a peak in axial velocity fluctuations within the boundary layer, 
in agreement with the experimental observations. 

The fluctuations in transverse velocities show a more significant impact of the 
closure model. At the first station, the simulation using LDKM over-predicts the 
peak in vTTns more significantly than the other numerical resolutions. The trend is 
however inverted further downstream, as the simulation with LDKM does recover 
the amplitude of vrms in the jet plume, and shows a better capture of the transverse 
velocity fluctuations evolution than the other two approaches. 

The differences between the LDKM and the no-model simulations can be easily 
conceived from the lack of dissipation in the under-resolved simulation. In this case, 
the rates of decay of the fluctuations is under-estimated, and the jet penetration 
is over-estimated.   To assess the differences between LDKMNcc and LDKM, it is 
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Figure 5.18: Profiles of mean axial and transverse velocities in the centerplane at 
four locations downstream of the injection. Comparison between no-model, classical 
LDKM (denoted LDKM^cc) and the coarse grid results presented earlier. 
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Figure 5.19: Profiles of fluctuating axial velocity statistics in the centerplane at 
four locations downstream of the injection. Comparison between no-model, classical 
LDKM (denoted LDKM^cc) and the coarse grid results presented earlier. 
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(a) LDKMNCC (b) LDKM 

Figure 5.20:   Contours of time averaged ksgs for the simulation of Case A using 
LDKMNCC and LDKM. 

interesting to compare the time averaged fields of ksgs for the two simulations, shown 
in Fig. 5.20 The turbulent Prandtl number obtained through the dynamic procedure 
is smaller than in the classical LDKM approach, and leads to a higher diffusion of 
the energy across the shear layers. Furthermore, the diffusion of ksgs due to pressure 
fluctuations can clearly be observed in Fig. 5.20, where the contours of subgrid 
kinetic energy in the mean barrel shock location are more diffuse. Furthermore, the 
intensity of ksgs in the recirculation region at the windward side, and at the leeward 
boundary of the jet, is higher for the LDKM simulation. As a consequence, the 
LDKM closure model shows a better capture of the turbulent decay in the wake of 
the jet. Furthermore, despite the rather coarse resolution of the bottom wall, the 
LDKM simulation captures an increase in the levels of ksgs in the near-wall region, 
whereas the LDKMncc fails to capture that phenomenon. 

5.6    Conclusion of the Jet in Crossflow Dynamical 
Study 

The vortical structures of a sonic jet injected into a supersonic crossflow have been 
studied using a Large Eddy Simulation methodology, adapted to the resolution and 
modeling of turbulence in compressible flows. The present approach has been vali- 
dated by comparisons with a series of experimental data (Santiago [1995], Santiago 
and Dutton [1997]) and the relevance of the grid resolution assessed. This base case 
has been complemented by two other operating conditions, designed to assess the 
impact of the free-stream Mach number and of the jet to momentum ratio on the 
flow average and dynamic vortical structures. 

Six types of vortical structures have been identified in the time-averaged fields. 
The bow shock in from the jet provokes the separation of the boundary layer, and two 
recirculation regions are formed in the separated zone. This vortical structure is found 
at the bottom wall all along the bow shock trajectory in the spanwise direction. A pair 
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of windward vortices is generated at the tip of the recirculation region, and extends 
along the upper jet boundary. This feature is present in all the cases considered in 
the present study, but is more clear for high jet to freestream momentum ratios. On 
the lateral sides of the jet, hanging vortices are formed along the expanding jet, and 
remain quasi-steady in the course of the interaction. On the leeward side of the jet, 
a pair of steady wake vortices is generated by the rapid re-centering of the mean flow 
towards the centerplane behind the jet. As the streams impact at the centerplane, 
a high pressure zone is created, which generates two outwards moving shocks and a 
strong upwash velocity. The shocks interact with the boundary layer and generate 
horseshoe vortices through local separation. The upwash velocity penetrates the jet 
plume, and generates the counter-rotating vortex pair in the wake of the jet. 

The flow dynamics resembles the subsonic jet in cross flow behavior as large vor- 
tices are formed on the windward side of the jet due to Kelvin-Helmholtz instabili- 
ties. This phenomenon is however enhanced in the present supersonic flow. The flow 
expansion at the nozzle of the jet varies in response to the large pressure fluctua- 
tions of the separated boundary layer, and the intermittent formation of compression 
waves within the under-expanded jet occurs. These waves propagate into the jet and 
strengthen into shocks. Finally, after reconnecting to another portion of the barrel 
shock further downstream, large pockets of jet fluid are ejected, with a high vertical 
velocity, hence generating intense vortices along the jet boundary. These jet shocks 
are three-dimensional and the vortical structures generated by this phenomenon wrap 
around the jet. Similarly, unsteady compression waves form along the sides of the 
jet, hence generating lateral vortices. These structures also engulf large amounts of 
freestream fluid, and carry it in the jet plume and wake regions. Their strength is 
found weaker than their circumferential counterpart. Windward vortices are observed 
in the instantaneous fields, and are subject to vortex sheet instability, but do not ini- 
tiate strong vorticity, and do not contribute significantly to the mixing occurring 
during the interaction. 

The mixing of jet and freestream fluids is achieved in the wake and plume of the 
jet. The counter-rotating vortex pair creates a large circulation and efficiently induces 
mixing at the large scales. The unsteady vortices generated in the close-jet region 
breakdown into smaller scale turbulent as they interact with the low velocity jet plume 
and achieve a fine mixing at the molecular level. The unsteady wake vortices that 
connect the mixing region to the bottom wall boundary layer were found to play no 
role in the mixing process in the cases considered in the present study. 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

6.1    Conclusion 
The focus of the present was the development of a Large Eddy Simulation method- 
ology adapted to the resolution of supersonic turbulent flows in complex geometries. 
To achieve this goal, two key objectives have been identified and addressed. 

The development of a numerical tool adapted to the resolution of turbulent struc- 
tures on body-conforming structured grid in supersonic flows was considered first. 
The simulation of turbulent flows with explicit turbulence modeling usually relies on 
the use of numerical schemes with low levels of intrinsic dissipation. These schemes 
behave poorly in the presence of shock waves, contact surfaces and other discontinu- 
ities. Upwind and shock capturing schemes, on the other hand, are too dissipative to 
be used for the resolution of turbulent flows. A hybrid numerical scheme was designed 
to circumvent these limitations. In this hybrid framework, the resolution of the flow 
structures is performed using a fourth-order central scheme while flow discontinuities 
are captured using an upwind shock-capturing method. The reduced amount of nu- 
merical dissipation of the central scheme and its small stencil formulation make it an 
ideal candidate for simulating turbulent flows in complex geometries. The developed 
upwind shock-capturing method was carefully designed to reduce numerical instabil- 
ities and yet to yield accurate capture of shocks and contact surfaces. Furthermore, 
this upwind scheme is adapted to body-conforming grids and can thus be used in 
complex geometries. The hybrid formulation uses a smoothness sensor in order to 
identify the discontinuous regions of the flow. Numerical fluxes are evaluated using 
the fourth-order central scheme but locally revert to the shock capturing method 
when the smoothness constraint is violated. 

The second development focused on the closure approach used to model the effect 
of subgrid turbulence on the resolved scales in compressible flows. The need for such 
development stemmed from the fact that closure models employed in compressible 
LES formulations have usually not been assessed for compressible turbulence, but 
rather have been calibrated in the incompressible flow limit. In the present work, the 
Localized Dynamic ksgs Model (LDKM) is re-derived for compressible flows, and the 
dynamic formulation of the closure coefficients re-assessed. The model is extended to 
include the dynamic evaluation of the coefficient required for the closure of the energy 
equation, important in compressible flows. Finally, the turbulent diffusion associated 
with subgrid pressure fluctuations, which plays a major role during shock / turbulence 
interactions, and the pressure dilatation correlation are modeled and their closure 
coefficients are dynamically evaluated in the context of the LDKM closure. 

The present study focuses on the resolution of turbulent flows in supersonic envi- 
ronment. The parameters used for the switch formulation of the hybrid methodology 
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were designed to capture flow discontinuities locally in supersonic and hypersonic en- 
vironments, and even though not universal, the present choice of switch parameter 
shows a satisfactory resolution of practical problems in supersonic flows. The modi- 
fications to the closure approach are based on analytical studies of turbulence states 
in compressible flows. The contribution of the dilatational mode of turbulence, the 
evaluation of the pressure dilatation correlation and the negligible contribution of the 
dilatational dissipation remain valid for small turbulent Mach numbers (Mt < 0.3), 
a condition satisfied in supersonic flows, but not necessarily for higher flow speeds. 
Based on these limitations, the present numerical methodology is applicable from low 
compressible to supersonic flows. 

Direct numerical simulations of shock / isotropic turbulence interactions for low, 
intermediate and high Mach numbers have been conducted and show the good per- 
formance of the numerical scheme. The use of upwinding is limited to the regions 
of strong gradients whereas the turbulent structures are resolved with the central 
scheme. As a consequence, the characteristic evolution of the turbulent field is cor- 
rectly captured. The resolution of these problems on a significantly coarser grid 
using the LDKM model with compressibility correction successfully reproduces the 
statistics of turbulence. 

After validation in the fundamental configuration of shock / turbulence interac- 
tions, this LES methodology was employed to study problems of practical importance. 
In particular, two mixing techniques for high-speed flows have been investigated in 
this study. First, the efficiency of a shock / turbulent shear layer interaction as a mix- 
ing enhancement technique was investigated. It was found that the passage of large 
vortical structures and smaller vortical turbulence across the shocks significantly in- 
creases the levels of turbulence in the post-shocks region, resulting in an increase of 
the mixing growth rate. On the other hand, the turbulence production across the 
mixing layer remains rather low, and the increase in mixing and turbulent dynamics 
is not sustained downstream of the interaction. The improvements in mixing are thus 
very localized in space, and the mixing growth rate quickly decays to its undisturbed 
value. 

The second case considered in the present work is that of a sonic jet injected 
normally into a supersonic crossflow. This injector design for scramjet applications 
shows a good penetration of the fuel into the cross stream, and an efficient mixing 
of the fluids is achieved due to the high levels of turbulence observed downstream of 
the jet. The numerical study of jet in crossflow presented in this report reproduce 
the velocity defect and high levels of turbulent fluctuations observed experimentally 
in the plume of the jet, and showed a fair agreement with the available experimental 
data. Having validated the LES approach for a given jet in crossflow, two other 
configurations were investigated to assess the impact of the free-stream Mach number 
and of the jet to free stream momentum ratios on the flow dynamics. In all the cases 
considered, the ejection of large pockets of unshocked jet fluids is identified, due to 
unsteady compressions and localized shock waves within the jet core. The vortical 
structures that result from this phenomenon show high levels of vorticity, and mix 
jet and freestream fluids at the large scale. Due to a higher jet expansion, the cases 
of higher momentum ratio and higher Mach number show a lower penetration of the 
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shock waves into the jet core, and smaller pockets of unshocked fluid. The counter- 
rotating vortex pair formed in the wake of the jet also contributes to the large scale 
mixing. High levels of turbulence in the plume and wake of the jet permit mixing 
to occur at smaller scales. Finally, quasi-steady hanging vortices are formed during 
these high-speed interactions, and windward vortex pairs are clearly identified in the 
higher momentum ratio jet in crossflow. Their contribution to the mixing remains 
rather low. 

All cases reported in this study demonstrate the accuracy and strength of the im- 
plemented approach. The use of an hybrid formulation provided the required method- 
ology for the capture of shock waves and other discontinuities locally in space, while 
minimizing their impact on the turbulent field, as illustrated by the direct simula- 
tions of shock / turbulence interaction. The closure model explicitly accounts for two 
major terms that arise in turbulence of compressible flows, namely the subgrid pres- 
sure fluctuations and the pressure dilatation correlation, and the LES simulations of 
shock / turbulence interactions show a good capture of the flow physics. This method- 
ology allowed for an in-depth study of shock / shear interaction and high-speed jet 
in crossflow configurations. 

6.2    Recommendations for Future Work 
In problems involving shock / turbulence interactions, turbulence enhancement is 
achieved in the post-shock region as a consequence of the shock deformation. The 
localized expansions and compressions formed by the shock corrugation increase the 
energy in the acoustic mode, and amplify the levels of turbulent stresses through an 
energy transfer. The capture of these phenomena requires a proper capture of the 
shock fronts and of their distortion. A good resolution of the shock fronts was possible 
for the configurations studied here, but this requirement might not always be easily 
satisfied for more complex and larger geometries, given that computational power 
remains limited. The implementation of a Local and Adaptive Mesh Refinement 
technique can be a useful complement to the developments presented here. In this 
method, the spatial resolution can be increased locally to resolve some parts of the 
flow that require higher grid refinements. The connectivity between blocks of different 
resolution is based on higher order interpolation techniques. The implementation of 
such a method in the context of LES is more intricate than for classical hydrodynamics 
problems. The flow variables are, by definition, spatially averaged, and a simple 
interpolation procedure might be insufficient. This is of particular importance for the 
kS9" variable, which depends by definition on the local grid size, and cannot be simply 
interpolated. Nevertheless, the development and implementation of such a technique 
for LES would be beneficial, for the practical resolution of high-speed turbulent flows 
and for many more applications. 

As reviewed earlier, the closure model developed during the present work aims at 
the resolution of turbulent compressible flows. Even though the mean flow might be 
compressible, it is stressed that turbulence is only weakly compressible in nature, and 
that compressible turbulence does not play a major role in most practical applications 
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until hypersonic speeds are reached. For this reason, the current developments have 
solely focused on the modeling of turbulent diffusion due to pressure fluctuations and 
to the pressure dilatation correlation. In particular, the dilatational dissipation was 
neglected, as this phenomenon is important in low Reynolds number, high turbulent 
Mach number flows only. It can be expected that in hypersonic flows or in the study 
of post explosion turbulence, the amount of compressible turbulence might not be 
negligible anymore and may require a separate modeling approach. Furthermore, 
another source of turbulent dissipation comes from the presence of eddy shocklets. 
These small scales and localized shock waves, observed in experiments of very high 
speed shear layers, form in the presence of compressible turbulence and interact with 
both solenoidal and dilatational turbulence. A stochastic model to account for these 
phenomena might be needed as well. 

Also, the present study has focused on the resolution and modeling of turbulence in 
high-speed, non-reacting flows. In the context of reacting flows, the treatment of the 
scalar fields requires particular attention, as the interaction between turbulence and 
flame fronts plays a fundamental role in the combustion processes and on the overall 
efficiency. Closure models for the subgrid species diffusion and filtered reaction rates 
are often valid in the incompressible limit, but might not be assessed for supersonic 
flows. Improvements on scalar closure models are a necessity to the future of scramjet 
simulations. The extension of the Linear Eddy Mixing model, for instance, to flows 
with significant variations in the pressure field would provide an efficient numerical 
tool for scramjet flow simulations. 
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